* add mlp fusion for llama * add mlp fusion * fix style * update * add mm_qkv_out * fix style * update * meet code review * meet code review
965 lines
45 KiB
Python
965 lines
45 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
# Some parts of this file is adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/utils/bitsandbytes.py
|
|
# and https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py
|
|
# which is licensed under Apache License 2.0:
|
|
#
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import platform
|
|
import torch
|
|
import torch.nn as nn
|
|
from accelerate import init_empty_weights
|
|
import warnings
|
|
import transformers
|
|
import importlib.util
|
|
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
|
from .utils import logger
|
|
from typing import Union
|
|
import numpy as np
|
|
import os
|
|
from bigdl.llm.utils.common import invalidInputError
|
|
|
|
|
|
def is_auto_gptq_available():
|
|
return importlib.util.find_spec("auto_gptq") is not None
|
|
|
|
|
|
def is_auto_awq_available():
|
|
return importlib.util.find_spec("awq") is not None
|
|
|
|
|
|
def is_deepspeed_available():
|
|
spec = importlib.util.find_spec("deepspeed")
|
|
if spec is not None:
|
|
deepspeed_path = spec.submodule_search_locations[0]
|
|
if deepspeed_path != os.path.join(os.getcwd(), "deepspeed"):
|
|
return True
|
|
else:
|
|
# not deepspeed package, just local dir
|
|
return False
|
|
else:
|
|
return False
|
|
|
|
|
|
if is_auto_gptq_available():
|
|
from auto_gptq.utils.peft_utils import QuantLinearCuda, QuantLinearCudaOld
|
|
|
|
if is_auto_awq_available():
|
|
from bigdl.llm.transformers.awq.linear import WQLinear_GEMM
|
|
from transformers.utils.quantization_config import AwqBackendPackingMethod
|
|
|
|
|
|
def is_linear_module(module):
|
|
|
|
in_features = None
|
|
out_features = None
|
|
mp_group = None
|
|
|
|
is_awq = is_auto_awq_available() and isinstance(module, WQLinear_GEMM)
|
|
|
|
if is_auto_gptq_available() and isinstance(module, QuantLinearCudaOld):
|
|
in_features = module.infeatures
|
|
out_features = module.outfeatures
|
|
mp_group = None
|
|
result = True
|
|
elif isinstance(module, nn.Linear) or is_awq:
|
|
in_features = module.in_features
|
|
out_features = module.out_features
|
|
mp_group = None
|
|
result = True
|
|
else:
|
|
if is_deepspeed_available():
|
|
from deepspeed.module_inject.layers import LinearLayer, LinearAllreduce
|
|
if isinstance(module, LinearLayer):
|
|
in_features = module.weight.shape[1]
|
|
out_features = module.weight.shape[0]
|
|
mp_group = None
|
|
result = True
|
|
elif isinstance(module, LinearAllreduce):
|
|
in_features = module.weight.shape[1]
|
|
out_features = module.weight.shape[0]
|
|
mp_group = module.mp_group
|
|
result = True
|
|
else:
|
|
result = False
|
|
else:
|
|
result = False
|
|
|
|
return result, (in_features, out_features, mp_group)
|
|
|
|
|
|
def convert_gptq(module, awq=False, llm_awq=False):
|
|
from bigdl.llm.transformers.low_bit_linear import get_block_size
|
|
Q4_1 = get_block_size("asym_int4")
|
|
|
|
scales = module.scales
|
|
|
|
zeros = torch.bitwise_right_shift(
|
|
torch.unsqueeze(module.qzeros, 2).expand(-1, -1, 32 // module.bits),
|
|
module.wf.unsqueeze(0)).to(torch.int16 if module.bits == 8 else torch.int8)
|
|
zeros = torch.bitwise_and(zeros, (2 ** module.bits) - 1)
|
|
|
|
if not awq:
|
|
zeros = zeros + 1
|
|
zeros = zeros.reshape(scales.shape)
|
|
|
|
if awq:
|
|
weight = torch.bitwise_right_shift(
|
|
torch.unsqueeze(module.qweight, 2).expand(-1, -1, 32 // module.bits),
|
|
module.wf.unsqueeze(0)).to(torch.int16 if module.bits == 8 else torch.int8)
|
|
weight = torch.bitwise_and(weight, (2 ** module.bits) - 1)
|
|
weight = weight.reshape(weight.shape[0], weight.shape[1] * weight.shape[2])
|
|
if llm_awq:
|
|
weight = weight.t()
|
|
else:
|
|
weight = torch.bitwise_right_shift(
|
|
torch.unsqueeze(module.qweight, 1).expand(-1, 32 // module.bits, -1),
|
|
module.wf.unsqueeze(-1)).to(torch.int8)
|
|
weight = torch.bitwise_and(weight, (2 ** module.bits) - 1)
|
|
weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
|
|
|
|
# convert weight to ggml format
|
|
weight = weight.reshape(weight.shape[0]//module.group_size, module.group_size, weight.shape[1])
|
|
weight = weight.permute(2, 0, 1).reshape(weight.shape[2], -1, 2, Q4_1//2)
|
|
weight = weight.transpose(2, 3)
|
|
weight = torch.bitwise_left_shift(weight,
|
|
torch.tensor([0, 4], dtype=torch.int8).reshape(1, 1, 1, 2))
|
|
weight = torch.bitwise_or(weight[:, :, :, 0], weight[:, :, :, 1]).contiguous()
|
|
|
|
# convert zeros to ggml format
|
|
if llm_awq:
|
|
real_scale_num = module.in_features // module.group_size
|
|
zeros = zeros[:, : real_scale_num]
|
|
scales = scales[:, : real_scale_num]
|
|
zeros = zeros.t()
|
|
scales = scales.t()
|
|
zeros = zeros.reshape(-1, 1, zeros.shape[1]).permute(2, 0, 1)\
|
|
.unsqueeze(2)\
|
|
.expand(-1, -1, module.group_size//Q4_1, -1)\
|
|
.reshape(zeros.shape[1], -1, 1)\
|
|
.contiguous().to(torch.float16)
|
|
|
|
# convert scales to ggml format
|
|
scales = scales.reshape(-1, 1, scales.shape[1]).permute(2, 0, 1)\
|
|
.unsqueeze(2)\
|
|
.expand(-1, -1, module.group_size//Q4_1, -1)\
|
|
.reshape(scales.shape[-1], -1, 1)\
|
|
.contiguous().to(torch.float16)
|
|
|
|
m = -(zeros * scales)
|
|
d = scales
|
|
|
|
ggml_weight = torch.cat([d.view(torch.uint8),
|
|
m.view(torch.uint8),
|
|
weight.view(torch.uint8)], dim=-1)
|
|
ggml_weight = ggml_weight.reshape([-1])
|
|
|
|
return ggml_weight
|
|
|
|
|
|
def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
|
current_key_name=None, convert_shape_only=False,
|
|
cpu_embedding=False):
|
|
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params, \
|
|
FP16Linear, BF16Linear
|
|
from bigdl.llm.transformers.embedding import LLMEmbedding
|
|
has_been_replaced = False
|
|
|
|
for name, module in model.named_children():
|
|
if current_key_name is None:
|
|
current_key_name = []
|
|
|
|
is_linear, linear_args = is_linear_module(module)
|
|
if is_linear and name not in modules_to_not_convert:
|
|
# Check if the current key is not in the `modules_to_not_convert`
|
|
if (not any(key in ".".join(current_key_name) for key in modules_to_not_convert) and
|
|
not isinstance(module, LowBitLinear)):
|
|
in_features, out_features, mp_group = linear_args
|
|
with init_empty_weights():
|
|
new_linear = None
|
|
is_gptq = is_auto_gptq_available() and isinstance(module, QuantLinearCudaOld)
|
|
is_awq = is_auto_awq_available() and isinstance(module, WQLinear_GEMM)
|
|
is_llm_awq = is_awq and module.backend == AwqBackendPackingMethod.LLMAWQ
|
|
if is_gptq or is_awq:
|
|
has_bias = module.bias is not None and module.bias.abs().sum() != 0
|
|
new_linear = LowBitLinear(
|
|
in_features,
|
|
out_features,
|
|
qtype=qtype,
|
|
bias=has_bias,
|
|
mp_group=mp_group,
|
|
)
|
|
device = module.qweight.data.device
|
|
invalidInputError(device.type != "meta",
|
|
"converting from meta device is not supported")
|
|
# Copy the weights
|
|
paramsLowBit = FP4Params(data=convert_gptq(module, awq=is_awq,
|
|
llm_awq=is_llm_awq),
|
|
requires_grad=False,
|
|
quantized=True,
|
|
_shape=(out_features, in_features),
|
|
convert_shape_only=convert_shape_only,
|
|
qtype=qtype).to(device)
|
|
new_linear._parameters['weight'] = paramsLowBit
|
|
if has_bias:
|
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
|
.to(device)
|
|
elif qtype not in [ggml_tensor_qtype["fp16"], ggml_tensor_qtype["bf16"]]:
|
|
new_linear = LowBitLinear(
|
|
in_features,
|
|
out_features,
|
|
qtype,
|
|
module.bias is not None,
|
|
mp_group=mp_group,
|
|
)
|
|
|
|
device = module.weight.data.device
|
|
# Copy the weights
|
|
paramsLowBit = FP4Params(data=module.weight.data,
|
|
requires_grad=False,
|
|
quantized=False,
|
|
_shape=None,
|
|
convert_shape_only=convert_shape_only,
|
|
qtype=qtype).to(device)
|
|
new_linear._parameters['weight'] = paramsLowBit
|
|
if module.bias is not None:
|
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
|
.to(device)
|
|
elif qtype == ggml_tensor_qtype["fp16"]:
|
|
module.to(torch.float16)
|
|
new_linear = FP16Linear(
|
|
in_features,
|
|
out_features,
|
|
module.bias is not None,
|
|
mp_group=mp_group,
|
|
)
|
|
device = module.weight.data.device
|
|
from bigdl.llm.transformers.utils import get_ipex_version
|
|
if get_ipex_version() < "2.1.10+xpu":
|
|
new_linear._parameters['weight'] = nn.Parameter(module.weight)
|
|
else:
|
|
# only from 2.1, ipex provides matmul_bias_out
|
|
# so we need to transpose weight
|
|
new_weight = module.weight.transpose(0, 1).contiguous()
|
|
new_linear._parameters['weight'] = nn.Parameter(new_weight)
|
|
new_linear.weight_type = 2
|
|
if module.bias is not None:
|
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
|
.to(device)
|
|
elif qtype == ggml_tensor_qtype["bf16"]:
|
|
module.to(torch.bfloat16)
|
|
new_linear = BF16Linear(
|
|
in_features,
|
|
out_features,
|
|
module.bias is not None,
|
|
mp_group=mp_group,
|
|
)
|
|
device = module.weight.data.device
|
|
# convert here
|
|
new_linear._parameters['weight'] = nn.Parameter(module.weight)
|
|
if module.bias is not None:
|
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
|
.to(device)
|
|
|
|
if new_linear is not None:
|
|
if not module.training:
|
|
new_linear.eval()
|
|
model._modules[name] = new_linear
|
|
has_been_replaced = True
|
|
# Force requires grad to False to avoid unexpected errors
|
|
model._modules[name].requires_grad_(False)
|
|
|
|
module.weight = None
|
|
elif cpu_embedding and type(module) == nn.Embedding:
|
|
# skip user-defined Embedding layer
|
|
model._modules[name] = LLMEmbedding(
|
|
num_embeddings=module.num_embeddings,
|
|
embedding_dim=module.embedding_dim,
|
|
padding_idx=module.padding_idx,
|
|
max_norm=module.max_norm,
|
|
norm_type=module.norm_type,
|
|
scale_grad_by_freq=module.scale_grad_by_freq,
|
|
sparse=module.sparse,
|
|
_weight=module.weight.data,
|
|
)
|
|
|
|
# Remove the last key for recursion
|
|
if len(list(module.children())) > 0:
|
|
_, _flag = _replace_with_low_bit_linear(
|
|
module,
|
|
qtype,
|
|
modules_to_not_convert,
|
|
current_key_name,
|
|
convert_shape_only,
|
|
cpu_embedding,
|
|
)
|
|
has_been_replaced = _flag or has_been_replaced
|
|
return model, has_been_replaced
|
|
|
|
|
|
def replace_with_low_bit_linear_for_module(model, qtype, module_name=None,
|
|
modules_to_not_convert=None, current_key_name=None,
|
|
convert_shape_only=False, torch_dtype="auto"):
|
|
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params, \
|
|
FP16Linear, BF16Linear
|
|
has_been_replaced = False
|
|
|
|
if "." in module_name:
|
|
splits = module_name.split(".")
|
|
parent_module = getattr(model, splits[0])
|
|
|
|
if "lm_head" not in module_name:
|
|
for split in splits[1:-2]:
|
|
new_module = getattr(parent_module, split)
|
|
parent_module = new_module
|
|
module = getattr(parent_module, splits[-2])
|
|
module_name = splits[-2]
|
|
else:
|
|
module = parent_module
|
|
parent_module = model
|
|
module_name = splits[0]
|
|
|
|
if current_key_name is None:
|
|
current_key_name = []
|
|
|
|
if modules_to_not_convert is None:
|
|
modules_to_not_convert = []
|
|
|
|
is_linear, linear_args = is_linear_module(module)
|
|
if is_linear and module_name not in modules_to_not_convert:
|
|
# Check if the current key is not in the `modules_to_not_convert`
|
|
if (not any(key in ".".join(current_key_name) for key in modules_to_not_convert) and
|
|
module.weight.data.device.type != 'meta' and not isinstance(module, LowBitLinear)):
|
|
in_features, out_features, mp_group = linear_args
|
|
with init_empty_weights():
|
|
new_linear = None
|
|
is_gptq = is_auto_gptq_available() and isinstance(module, QuantLinearCudaOld)
|
|
is_awq = is_auto_awq_available() and isinstance(module, WQLinear_GEMM)
|
|
is_llm_awq = is_awq and module.backend == AwqBackendPackingMethod.LLMAWQ
|
|
if is_gptq or is_awq:
|
|
has_bias = module.bias is not None and module.bias.abs().sum() != 0
|
|
new_linear = LowBitLinear(
|
|
in_features,
|
|
out_features,
|
|
qtype=qtype,
|
|
bias=has_bias,
|
|
mp_group=mp_group,
|
|
)
|
|
device = module.qweight.data.device
|
|
invalidInputError(device.type != "meta",
|
|
"converting from meta device is not supported")
|
|
# Copy the weights
|
|
paramsLowBit = FP4Params(data=convert_gptq(module, awq=is_awq,
|
|
llm_awq=is_llm_awq),
|
|
requires_grad=False,
|
|
quantized=True,
|
|
_shape=(out_features, in_features),
|
|
convert_shape_only=convert_shape_only,
|
|
qtype=qtype).to(device)
|
|
new_linear._parameters['weight'] = paramsLowBit
|
|
if has_bias:
|
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
|
.to(device)
|
|
elif qtype not in [ggml_tensor_qtype["fp16"], ggml_tensor_qtype["bf16"]]:
|
|
new_linear = LowBitLinear(
|
|
in_features,
|
|
out_features,
|
|
qtype,
|
|
module.bias is not None,
|
|
mp_group=mp_group,
|
|
)
|
|
|
|
device = module.weight.data.device
|
|
# Copy the weights
|
|
paramsLowBit = FP4Params(data=module.weight.data,
|
|
requires_grad=False,
|
|
quantized=False,
|
|
_shape=None,
|
|
convert_shape_only=convert_shape_only,
|
|
qtype=qtype).to(device)
|
|
new_linear._parameters['weight'] = paramsLowBit
|
|
if module.bias is not None:
|
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
|
.to(device)
|
|
elif qtype == ggml_tensor_qtype["fp16"]:
|
|
module.to(torch.float16)
|
|
new_linear = FP16Linear(
|
|
in_features,
|
|
out_features,
|
|
module.bias is not None,
|
|
mp_group=mp_group,
|
|
)
|
|
device = module.weight.data.device
|
|
from bigdl.llm.transformers.utils import get_ipex_version
|
|
if get_ipex_version() < "2.1.10+xpu":
|
|
new_linear._parameters['weight'] = nn.Parameter(module.weight)
|
|
else:
|
|
# only from 2.1, ipex provides matmul_bias_out
|
|
# so we need to transpose weight
|
|
new_weight = module.weight.transpose(0, 1).contiguous()
|
|
new_linear._parameters['weight'] = nn.Parameter(new_weight)
|
|
new_linear.weight_type = 2
|
|
if module.bias is not None:
|
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
|
.to(device)
|
|
elif qtype == ggml_tensor_qtype["bf16"]:
|
|
module.to(torch.bfloat16)
|
|
new_linear = BF16Linear(
|
|
in_features,
|
|
out_features,
|
|
module.bias is not None,
|
|
mp_group=mp_group,
|
|
)
|
|
device = module.weight.data.device
|
|
# convert here
|
|
new_linear._parameters['weight'] = nn.Parameter(module.weight)
|
|
if module.bias is not None:
|
|
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
|
.to(device)
|
|
|
|
if new_linear is not None:
|
|
if not module.training:
|
|
new_linear.eval()
|
|
parent_module._modules[module_name] = new_linear
|
|
has_been_replaced = True
|
|
# Force requires grad to False to avoid unexpected errors
|
|
parent_module._modules[module_name].requires_grad_(False)
|
|
|
|
module.weight = None
|
|
|
|
if has_been_replaced:
|
|
if not (getattr(model, "quantization_method", None) == "gptq"):
|
|
if torch_dtype == "auto":
|
|
convert_bigdl_other_module(model, torch.float32)
|
|
else:
|
|
convert_bigdl_other_module(model, torch_dtype)
|
|
return model
|
|
|
|
|
|
def _optimize_pre(model):
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
# All huggingface format models are inherited from `PreTrainedModel`
|
|
if not isinstance(model, PreTrainedModel):
|
|
logger.info("Only HuggingFace Transformers models are currently "
|
|
"supported for further optimizations")
|
|
return model
|
|
# for rwkv models (verified RWKV/rwkv-4-world-7b)
|
|
if model.config.model_type == "rwkv":
|
|
model.rwkv._rescale_layers()
|
|
# process NormHead module in Baichuan2 7B and 13B
|
|
if model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
|
|
# NormHead do normalization on the weights just once at inference time.
|
|
# so we do it in advance and convert it to Linear so that it can be replaced.
|
|
# modeling_module_name = model.__class__.__module__
|
|
# module = importlib.import_module(modeling_module_name)
|
|
if hasattr(model, 'lm_head') and model.lm_head is not None:
|
|
# do we need to check the class instance?
|
|
vocab_size, hidden_size = model.lm_head.weight.shape
|
|
lm_head_weight_data = model.lm_head.weight.data
|
|
model.lm_head = nn.Linear(hidden_size, vocab_size, bias=False,
|
|
device=lm_head_weight_data.device)
|
|
# In which case we are NOT loading the normalized weights
|
|
if model.lm_head.weight.data.device != "meta":
|
|
norm_weight = nn.functional.normalize(lm_head_weight_data)
|
|
model.lm_head.weight.data = norm_weight
|
|
return model
|
|
|
|
|
|
def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
|
convert_shape_only=False, device="cpu",
|
|
modules_to_not_convert=None, cpu_embedding=False,
|
|
lightweight_bmm=False, torch_dtype="auto"):
|
|
logger.info(f"Converting the current model to "
|
|
f"{list(ggml_tensor_qtype.keys())[list(ggml_tensor_qtype.values()).index(qtype)]} "
|
|
f"format......")
|
|
modules_to_not_convert = [] if modules_to_not_convert is None else modules_to_not_convert
|
|
|
|
if optimize_model:
|
|
model = _optimize_pre(model)
|
|
|
|
model, has_been_replaced = _replace_with_low_bit_linear(
|
|
model, qtype, modules_to_not_convert,
|
|
None, convert_shape_only, cpu_embedding,
|
|
)
|
|
if not has_been_replaced:
|
|
warnings.warn(
|
|
"No linear modules were found in "
|
|
"your model. This can happen for some architectures such as gpt2 that uses Conv1D "
|
|
"instead of Linear layers. Please double check your model architecture, or submit "
|
|
"an issue on github if you think this is a bug."
|
|
)
|
|
elif device == "cpu":
|
|
if not (getattr(model, "quantization_method", None) == "gptq"):
|
|
if torch_dtype == "auto":
|
|
convert_bigdl_other_module(model, torch.float32)
|
|
else:
|
|
convert_bigdl_other_module(model, torch_dtype)
|
|
elif device == "meta":
|
|
# Do nothing here for weights are empty.
|
|
pass
|
|
|
|
if optimize_model:
|
|
model = _optimize_post(model, lightweight_bmm)
|
|
return model
|
|
|
|
|
|
def convert_bigdl_other_module(model, dtype):
|
|
# Convert modules outside of bigdl linear to corresponding dtype
|
|
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, \
|
|
FP16Linear, BF16Linear
|
|
for module in model.modules():
|
|
if list(module.children()) == []:
|
|
# leaf module
|
|
if not isinstance(module, (LowBitLinear, FP16Linear, BF16Linear)):
|
|
module.to(dtype)
|
|
|
|
|
|
def convert_forward(m, target_m, new_forward):
|
|
for _, sub_m in m.named_children():
|
|
if isinstance(sub_m, target_m):
|
|
bound_method = new_forward.__get__(sub_m, sub_m.__class__)
|
|
setattr(sub_m, "forward", bound_method)
|
|
convert_forward(sub_m, target_m, new_forward)
|
|
|
|
|
|
def replace_func(m, target_m, func_name, new_func):
|
|
for _, sub_m in m.named_children():
|
|
if isinstance(sub_m, target_m):
|
|
bound_method = new_func.__get__(sub_m, sub_m.__class__)
|
|
setattr(sub_m, func_name, bound_method)
|
|
replace_func(sub_m, target_m, func_name, new_func)
|
|
|
|
|
|
def _optimize_post(model, lightweight_bmm=False):
|
|
from packaging import version
|
|
from bigdl.llm.transformers.models.llama import llama_attention_forward_4_31
|
|
from bigdl.llm.transformers.models.llama import llama_attention_selective_batching_forward_4_31
|
|
from bigdl.llm.transformers.models.llama import llama_model_selective_batching_forward_4_31
|
|
from bigdl.llm.transformers.models.llama import llama_rms_norm_forward
|
|
from bigdl.llm.transformers.models.llama import llama_mlp_forward
|
|
from bigdl.llm.transformers.models.llama import llama_decoder_forward
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
# All huggingface format models are inherited from `PreTrainedModel`
|
|
if not isinstance(model, PreTrainedModel):
|
|
logger.info("Only HuggingFace Transformers models are currently "
|
|
"supported for further optimizations")
|
|
return model
|
|
|
|
vllm_selective_batching = os.getenv("VLLM_ENABLE_SELECTIVE_BATCHING")
|
|
enable_vllm_se_batching = vllm_selective_batching is not None
|
|
enable_vllm_se_batching = enable_vllm_se_batching and vllm_selective_batching.lower() == "true"
|
|
|
|
trans_version = transformers.__version__
|
|
if version.parse(trans_version) >= version.parse("4.31.0"):
|
|
convert_forward(
|
|
model,
|
|
transformers.models.llama.modeling_llama.LlamaRMSNorm,
|
|
llama_rms_norm_forward,)
|
|
convert_forward(model,
|
|
transformers.models.llama.modeling_llama.LlamaMLP,
|
|
llama_mlp_forward)
|
|
convert_forward(model,
|
|
transformers.models.llama.modeling_llama.LlamaDecoderLayer,
|
|
llama_decoder_forward)
|
|
if version.parse(trans_version) >= version.parse("4.36.0"):
|
|
# transformers version >= 4.36.0
|
|
from bigdl.llm.transformers.models.llama import llama_attention_forward_4_36
|
|
convert_forward(
|
|
model,
|
|
transformers.models.llama.modeling_llama.LlamaAttention,
|
|
llama_attention_forward_4_36, )
|
|
else:
|
|
# transformers version between 4.31.0 - 4.35.2
|
|
convert_forward(
|
|
model,
|
|
transformers.models.llama.modeling_llama.LlamaAttention,
|
|
llama_attention_forward_4_31, )
|
|
if enable_vllm_se_batching:
|
|
convert_forward(
|
|
model,
|
|
transformers.models.llama.modeling_llama.LlamaModel,
|
|
llama_model_selective_batching_forward_4_31,
|
|
)
|
|
convert_forward(
|
|
model,
|
|
transformers.models.llama.modeling_llama.LlamaAttention,
|
|
llama_attention_selective_batching_forward_4_31,
|
|
)
|
|
else:
|
|
# todo implement 4.28.0 ~ 4.30.2
|
|
pass
|
|
|
|
# convert all nn.LayerNorm
|
|
from bigdl.llm.transformers.models.bloom import bloom_layer_norm_forward
|
|
convert_forward(model,
|
|
nn.LayerNorm,
|
|
bloom_layer_norm_forward)
|
|
|
|
if model.config.architectures is not None \
|
|
and model.config.architectures[0] in ["ChatGLMModel", "ChatGLMForConditionalGeneration"]:
|
|
if model.config.num_layers == 28 and hasattr(model.config, 'rope_ratio'):
|
|
# chatglm2-6b-32k
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.chatglm2_32k import chatglm2_32k_attention_forward
|
|
convert_forward(model,
|
|
module.SelfAttention,
|
|
chatglm2_32k_attention_forward)
|
|
elif hasattr(model.config, 'padded_vocab_size') and \
|
|
model.config.padded_vocab_size == 65024:
|
|
# chatglm2-6b
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.chatglm2 import chatglm2_attention_forward
|
|
from bigdl.llm.transformers.models.chatglm2 import chatglm_rms_norm_forward
|
|
from bigdl.llm.transformers.models.chatglm2 import chatglm2_model_forward
|
|
convert_forward(model,
|
|
module.SelfAttention,
|
|
chatglm2_attention_forward)
|
|
convert_forward(model,
|
|
module.ChatGLMModel,
|
|
chatglm2_model_forward)
|
|
convert_forward(model,
|
|
module.RMSNorm,
|
|
chatglm_rms_norm_forward)
|
|
elif hasattr(model.config, 'vocab_size') and model.config.vocab_size == 130528:
|
|
# chatglm-6b
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.chatglm import chatglm_attention_forward
|
|
convert_forward(model,
|
|
module.SelfAttention,
|
|
chatglm_attention_forward
|
|
)
|
|
elif "mpt" in model.config.model_type:
|
|
if model.config.architectures is not None:
|
|
modeling_module_name = model.__class__.__module__
|
|
attention_module_name = '.'.join(modeling_module_name.split('.')[:-1]) + ".attention"
|
|
module = importlib.import_module(attention_module_name)
|
|
from bigdl.llm.transformers.models.mpt import mpt_multihead_attention_forward
|
|
convert_forward(model,
|
|
module.MultiheadAttention,
|
|
mpt_multihead_attention_forward
|
|
)
|
|
elif "gptj" in model.config.model_type:
|
|
# dolly-v1-6b
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.gptj import gptj_attention_forward
|
|
convert_forward(model,
|
|
module.GPTJAttention,
|
|
gptj_attention_forward)
|
|
elif "bloom" in model.config.model_type:
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.bloom import bloom_attention_forward
|
|
convert_forward(model,
|
|
module.BloomAttention,
|
|
bloom_attention_forward
|
|
)
|
|
elif "falcon" in model.config.model_type or "RefinedWeb" in model.config.model_type:
|
|
if model.config.architectures is not None:
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
if "RWForCausalLM" in model.config.architectures:
|
|
if model.config.hidden_size == 4544:
|
|
# falcon-7b need to check performance drop after kv cache support.
|
|
# from bigdl.llm.transformers.models.falcon import rw_attention_forward_7b
|
|
# convert_forward(model,
|
|
# module.Attention,
|
|
# rw_attention_forward_7b
|
|
# )
|
|
pass
|
|
else:
|
|
# falcon-40b
|
|
from bigdl.llm.transformers.models.falcon import rw_attention_forward_40b
|
|
convert_forward(model,
|
|
module.Attention,
|
|
rw_attention_forward_40b
|
|
)
|
|
elif "FalconForCausalLM" in model.config.architectures:
|
|
if model.config.hidden_size != 4544:
|
|
# falcon-180b and new falcon-40b
|
|
from bigdl.llm.transformers.models.falcon import falcon_attention_forward
|
|
convert_forward(model,
|
|
module.FalconAttention,
|
|
falcon_attention_forward
|
|
)
|
|
elif model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
|
|
# baichuan2
|
|
if model.config.hidden_size == 4096:
|
|
# baichuan2-7B
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.baichuan2 import baichuan_attention_forward_7b
|
|
from bigdl.llm.transformers.models.baichuan2 import baichuan_mlp_forward
|
|
convert_forward(model,
|
|
module.Attention,
|
|
baichuan_attention_forward_7b
|
|
)
|
|
convert_forward(model,
|
|
module.RMSNorm,
|
|
llama_rms_norm_forward)
|
|
convert_forward(model,
|
|
module.MLP,
|
|
baichuan_mlp_forward)
|
|
elif model.config.hidden_size == 5120:
|
|
# baichuan2-13B
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.baichuan2 import baichuan_attention_forward_13b
|
|
from bigdl.llm.transformers.models.baichuan2 import baichuan_13b_rms_norm_forward
|
|
from bigdl.llm.transformers.models.baichuan2 import baichuan_mlp_forward
|
|
from bigdl.llm.transformers.models.baichuan2 import baichuan_13b_get_alibi_mask
|
|
convert_forward(model,
|
|
module.BaichuanAttention,
|
|
baichuan_attention_forward_13b
|
|
)
|
|
# baichuan2-13B's RMSNorm is a little different
|
|
convert_forward(model,
|
|
module.RMSNorm,
|
|
baichuan_13b_rms_norm_forward)
|
|
convert_forward(model,
|
|
module.MLP,
|
|
baichuan_mlp_forward)
|
|
replace_func(model,
|
|
module.BaichuanModel,
|
|
"get_alibi_mask",
|
|
baichuan_13b_get_alibi_mask)
|
|
elif model.config.model_type == "baichuan":
|
|
# baichuan1
|
|
if model.config.hidden_size == 4096:
|
|
# baichuan-7B
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.baichuan import baichuan_attention_forward_7b
|
|
convert_forward(model,
|
|
module.Attention,
|
|
baichuan_attention_forward_7b
|
|
)
|
|
convert_forward(model,
|
|
module.RMSNorm,
|
|
llama_rms_norm_forward)
|
|
elif model.config.hidden_size == 5120:
|
|
# baichuan-13B
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.baichuan import baichuan_attention_forward_13b
|
|
from bigdl.llm.transformers.models.baichuan2 import baichuan_13b_rms_norm_forward
|
|
convert_forward(model,
|
|
module.BaichuanAttention,
|
|
baichuan_attention_forward_13b
|
|
)
|
|
# baichuan-13B's RMSNorm is a little different
|
|
convert_forward(model,
|
|
module.RMSNorm,
|
|
baichuan_13b_rms_norm_forward)
|
|
elif model.config.model_type == "gpt_neox":
|
|
from bigdl.llm.transformers.models.gptneox import gptneox_attention_forward
|
|
convert_forward(model,
|
|
transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXAttention,
|
|
gptneox_attention_forward
|
|
)
|
|
elif model.config.model_type == "internlm":
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.internlm import internlm_attention_forward
|
|
convert_forward(model,
|
|
module.InternLMAttention,
|
|
internlm_attention_forward
|
|
)
|
|
convert_forward(model,
|
|
module.InternLMRMSNorm,
|
|
llama_rms_norm_forward
|
|
)
|
|
elif model.config.model_type == "qwen":
|
|
if hasattr(model.config, "visual"):
|
|
# for Qwen-VL-Chat
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.qwen_vl import qwen_attention_forward_vl
|
|
convert_forward(model,
|
|
module.QWenAttention,
|
|
qwen_attention_forward_vl
|
|
)
|
|
else:
|
|
# for Qwen-7B and Qwen-14B
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.qwen import qwen_attention_forward
|
|
from bigdl.llm.transformers.models.qwen import qwen_mlp_forward
|
|
from bigdl.llm.transformers.models.chatglm2 import chatglm_rms_norm_forward
|
|
convert_forward(model,
|
|
module.QWenAttention,
|
|
qwen_attention_forward
|
|
)
|
|
convert_forward(model,
|
|
module.RMSNorm,
|
|
chatglm_rms_norm_forward)
|
|
convert_forward(model,
|
|
module.QWenMLP,
|
|
qwen_mlp_forward)
|
|
elif model.config.model_type == "aquila":
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.aquila import aquila_attention_forward
|
|
convert_forward(model,
|
|
module.AquilaAttention,
|
|
aquila_attention_forward
|
|
)
|
|
convert_forward(model,
|
|
module.AquilaRMSNorm,
|
|
llama_rms_norm_forward)
|
|
elif model.config.model_type == "mixtral":
|
|
# For mistralai/Mixtral-8x7B-v0.1
|
|
invalidInputError(version.parse(trans_version) >= version.parse("4.36.0"),
|
|
"Please upgrade transformers to 4.36.0 or higher version "
|
|
"to run Mixtral models.")
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.mixtral import mixtral_moeblock_forward, \
|
|
mixtral_attention_forward, mixtral_mlp_forward
|
|
convert_forward(model,
|
|
module.MixtralAttention,
|
|
mixtral_attention_forward)
|
|
convert_forward(model,
|
|
module.MixtralRMSNorm,
|
|
llama_rms_norm_forward)
|
|
convert_forward(model,
|
|
module.MixtralSparseMoeBlock,
|
|
mixtral_moeblock_forward)
|
|
convert_forward(model,
|
|
module.MixtralBLockSparseTop2MLP,
|
|
mixtral_mlp_forward)
|
|
elif model.config.model_type == "mistral":
|
|
if model.config.architectures is not None and \
|
|
model.config.architectures[0] == "MixtralForCausalLM":
|
|
# For DiscoResearch/mixtral-7b-8expert
|
|
invalidInputError(version.parse(trans_version) >= version.parse("4.36.0"),
|
|
"Please upgrade transformers to 4.36.0 or higher version "
|
|
"to run Mixtral models.")
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
convert_forward(model,
|
|
module.MistralRMSNorm,
|
|
llama_rms_norm_forward)
|
|
else:
|
|
if version.parse(trans_version) >= version.parse("4.36.0"):
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.mistral import mistral_attention_forward_4_36
|
|
convert_forward(model,
|
|
module.MistralAttention,
|
|
mistral_attention_forward_4_36
|
|
)
|
|
convert_forward(model,
|
|
module.MistralRMSNorm,
|
|
llama_rms_norm_forward)
|
|
convert_forward(model,
|
|
module.MistralMLP,
|
|
llama_mlp_forward)
|
|
else:
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.mistral import mistral_attention_forward
|
|
convert_forward(model,
|
|
module.MistralAttention,
|
|
mistral_attention_forward
|
|
)
|
|
convert_forward(model,
|
|
module.MistralRMSNorm,
|
|
llama_rms_norm_forward)
|
|
convert_forward(model,
|
|
module.MistralMLP,
|
|
llama_mlp_forward)
|
|
elif model.config.model_type == "Yi":
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
convert_forward(model,
|
|
module.YiRMSNorm,
|
|
llama_rms_norm_forward)
|
|
elif model.config.model_type == "whisper" and lightweight_bmm:
|
|
if platform.system().lower() == 'windows':
|
|
from bigdl.llm.transformers.bmm import SafeBMM
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
old_fwd = module.WhisperAttention.forward
|
|
|
|
def safe_bmm_fwd(*args, **kwargs):
|
|
with SafeBMM():
|
|
return old_fwd(*args, **kwargs)
|
|
|
|
convert_forward(model,
|
|
module.WhisperAttention,
|
|
safe_bmm_fwd)
|
|
elif model.config.model_type == "rwkv":
|
|
# rwkv v4
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.rwkv4 import rwkv_attention_forward
|
|
convert_forward(model,
|
|
module.RwkvSelfAttention,
|
|
rwkv_attention_forward)
|
|
elif model.config.model_type == "deci":
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.decilm import decilm_attention_forward_4_35_2
|
|
convert_forward(model,
|
|
module.LlamaRMSNorm,
|
|
llama_rms_norm_forward)
|
|
convert_forward(model,
|
|
module.LlamaMLP,
|
|
llama_mlp_forward)
|
|
convert_forward(model,
|
|
module.DeciLMAttention,
|
|
decilm_attention_forward_4_35_2, )
|
|
elif model.config.model_type == "rwkv5":
|
|
# rwkv v5
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.rwkv5 import rwkv_attention_forward
|
|
convert_forward(model,
|
|
module.RwkvSelfAttention,
|
|
rwkv_attention_forward)
|
|
elif model.config.model_type == "gpt_bigcode":
|
|
# starcoder
|
|
modeling_module_name = model.__class__.__module__
|
|
module = importlib.import_module(modeling_module_name)
|
|
from bigdl.llm.transformers.models.gptbigcode import _attn_wrapper
|
|
_attn = _attn_wrapper(module.GPTBigCodeAttention._attn)
|
|
replace_func(model,
|
|
module.GPTBigCodeAttention,
|
|
"_attn",
|
|
_attn)
|
|
return model
|