ipex-llm/python/llm/example/CPU
2023-12-11 14:07:34 +08:00
..
Applications Uing bigdl-llm-init instead of bigdl-nano-init (#9558) 2023-11-30 10:10:29 +08:00
Deepspeed-AutoTP install bigdl-llm in deepspeed cpu inference example (#9508) 2023-11-23 08:39:21 +08:00
HF-Transformers-AutoModels [LLM] support for Yi AWQ model (#9648) 2023-12-11 14:07:34 +08:00
LangChain LLM: update example layout (#9046) 2023-10-09 15:36:39 +08:00
Native-Models LLM: update example layout (#9046) 2023-10-09 15:36:39 +08:00
PyTorch-Models Add cpu and gpu examples for BlueLM (#9589) 2023-12-05 13:59:02 +08:00
QLoRA-FineTuning update transformer version (#9631) 2023-12-08 09:36:00 +08:00
vLLM-Serving Add vLLM-XPU version's README/examples (#9536) 2023-11-28 09:44:03 +08:00
README.md Update GGUF readme (#9611) 2023-12-06 18:21:54 +08:00

BigDL-LLM Examples on Intel CPU

This folder contains examples of running BigDL-LLM on Intel CPU:

  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on BigDL-LLM (using the standard AutoModel APIs)
  • QLoRA-FineTuning: running QLoRA finetuning using BigDL-LLM on intel CPUs
  • vLLM-Serving: running vLLM serving framework on intel CPUs (with BigDL-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with BigDL-LLM low-bit optimized models)
  • LangChain: running LangChain applications on BigDL-LLM
  • Applications: running LLM applications (such as agent, streaming-llm) on BigDl-LLM
  • PyTorch-Models: running any PyTorch model on BigDL-LLM (with "one-line code change")
  • Native-Models: converting & running LLM in llama/chatglm/bloom/gptneox/starcoder model family using native (cpp) implementation

System Support

Hardware:

  • Intel® Core™ processors
  • Intel® Xeon® processors

Operating System:

  • Ubuntu 20.04 or later (glibc>=2.17)
  • CentOS 7 or later (glibc>=2.17)
  • Windows 10/11, with or without WSL

Best Known Configuration on Linux

For better performance, it is recommended to set environment variables on Linux with the help of BigDL-LLM:

pip install bigdl-llm
source bigdl-llm-init