262 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import os
 | 
						|
import json
 | 
						|
from .transformers import ggml_convert_low_bit
 | 
						|
from torch.nn.modules import Module
 | 
						|
from torch.nn.modules.module import _IncompatibleKeys
 | 
						|
from accelerate import init_empty_weights
 | 
						|
from accelerate.utils import set_module_tensor_to_device
 | 
						|
from ipex_llm.ggml.quantize import ggml_tensor_qtype
 | 
						|
from ipex_llm.utils.common import invalidInputError
 | 
						|
from ipex_llm.transformers.utils import extract_local_archive_file, get_local_shard_files
 | 
						|
import transformers
 | 
						|
import warnings
 | 
						|
from transformers import PreTrainedModel
 | 
						|
from .utils.common import MuteHFLogger
 | 
						|
from .utils.lazy_load_torch import LazyLoadTensors
 | 
						|
from contextlib import ExitStack, contextmanager
 | 
						|
 | 
						|
 | 
						|
# Simulate the Hugging Face format
 | 
						|
PYTORCH_MODEL_NAME = "pytorch_model.bin"
 | 
						|
CONFIG_NAME = "bigdl_config.json"
 | 
						|
 | 
						|
 | 
						|
def _save_low_bit(self, save_dir, *args, **kwargs):
 | 
						|
    invalidInputError(self._bigdl_config.get("bigdl_transformers_low_bit", False),
 | 
						|
                      f"Detected this model is not a low-bit model, please use from_pretrained's"
 | 
						|
                      f" load_in_4bit or load_in_low_bit parameter to load a 4-bit model first.")
 | 
						|
    os.makedirs(save_dir, exist_ok=True)
 | 
						|
    model_path = os.path.join(save_dir, PYTORCH_MODEL_NAME)
 | 
						|
    if isinstance(self, PreTrainedModel):
 | 
						|
        # We borrowed this method to adapt to Transformer model cases
 | 
						|
        # as much as possible, and later we may merge these two situations
 | 
						|
        self.save_pretrained(save_dir)
 | 
						|
    else:
 | 
						|
        # TODO: For the lowbit model still larger than 8GB,
 | 
						|
        #       save it into shards.
 | 
						|
        torch.save(self.state_dict(), model_path, *args, **kwargs)
 | 
						|
    with open(os.path.join(save_dir, CONFIG_NAME), "w") as json_file:
 | 
						|
        json.dump(self._bigdl_config, json_file)
 | 
						|
 | 
						|
 | 
						|
# Under `init_empty_weights()`, we need to disable all actions
 | 
						|
# that may lead to any parameter allocation", otherwise may need to error:
 | 
						|
# NotImplementedError: Cannot copy out of meta tensor; no data!
 | 
						|
class DisableTorchAllocTensor():
 | 
						|
    def __init__(self) -> None:
 | 
						|
        self._old_torch_load_state_dict = Module.load_state_dict
 | 
						|
        self._old_torch_to_device = Module.to
 | 
						|
        self._old_torch_load_from_state_dict = Module._load_from_state_dict
 | 
						|
        # Chatglm2 init weights manually,
 | 
						|
        # and `skip_init` init on `cpu` by default
 | 
						|
        self._old_skip_init = torch.nn.utils.skip_init
 | 
						|
 | 
						|
    def __enter__(self):
 | 
						|
        Module.load_state_dict = lambda *args, **kwargs: _IncompatibleKeys([], [])
 | 
						|
        Module._load_from_state_dict = lambda *args, **kwargs: None
 | 
						|
        Module.to = lambda self, *args, **kwargs: self
 | 
						|
 | 
						|
        def skip_init_on_meta(module_cls, *args, **kwargs):
 | 
						|
            kwargs['device'] = 'meta'
 | 
						|
            return self._old_skip_init(module_cls, *args, **kwargs)
 | 
						|
        torch.nn.utils.skip_init = skip_init_on_meta
 | 
						|
 | 
						|
    def __exit__(self, exc_type, exc_value, traceback):
 | 
						|
        Module.load_state_dict = self._old_torch_load_state_dict
 | 
						|
        Module._load_from_state_dict = self._old_torch_load_from_state_dict
 | 
						|
        Module.to = self._old_torch_to_device
 | 
						|
        torch.nn.utils.skip_init = self._old_skip_init
 | 
						|
 | 
						|
 | 
						|
class ContextManagers:
 | 
						|
    """
 | 
						|
    Wrapper for `contextlib.ExitStack` which enters a collection of context managers.
 | 
						|
    Adaptation of `ContextManagers` in the `fastcore` library.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, context_managers):
 | 
						|
        self.context_managers = context_managers
 | 
						|
        self.stack = ExitStack()
 | 
						|
 | 
						|
    def __enter__(self):
 | 
						|
        for context_manager in self.context_managers:
 | 
						|
            self.stack.enter_context(context_manager)
 | 
						|
 | 
						|
    def __exit__(self, *args, **kwargs):
 | 
						|
        self.stack.__exit__(*args, **kwargs)
 | 
						|
 | 
						|
 | 
						|
def low_bit_sanity_check(model_path):
 | 
						|
    invalidInputError(os.path.isdir(model_path),
 | 
						|
                      "model_path should be a valid directory path.")
 | 
						|
    invalidInputError(os.path.isfile(os.path.join(model_path, CONFIG_NAME)),
 | 
						|
                      "bigdl_config.json should be under your model directory,"
 | 
						|
                      "please check your input path.")
 | 
						|
    with open(os.path.join(model_path, CONFIG_NAME), 'r') as f:
 | 
						|
        _config = json.load(f)
 | 
						|
 | 
						|
    low_bit = _config.get("bigdl_transformers_low_bit", None)
 | 
						|
    invalidInputError(low_bit,
 | 
						|
                      "Detect this model is not a low-bit model, Please use `optimize_model`"
 | 
						|
                      " with low_bit to get a low-bit model , and "
 | 
						|
                      " serialize the model using save_low_bit first.")
 | 
						|
    return low_bit
 | 
						|
 | 
						|
 | 
						|
@contextmanager
 | 
						|
def low_memory_init():
 | 
						|
    init_contexts = []
 | 
						|
    init_contexts.extend([init_empty_weights(), DisableTorchAllocTensor()])
 | 
						|
    # Load everything except Tensors' parameters
 | 
						|
    init_contexts.append(LazyLoadTensors())
 | 
						|
    # As we have muted the `torch.load`, this will trigger a key missing warning in hf
 | 
						|
    # but this matters not for we will load again later.
 | 
						|
    init_contexts.append(MuteHFLogger(logger=transformers.modeling_utils.logger))
 | 
						|
    with ContextManagers(init_contexts):
 | 
						|
        yield
 | 
						|
 | 
						|
 | 
						|
def load_low_bit(model, model_path):
 | 
						|
    """
 | 
						|
    Load the optimized pytorch model.
 | 
						|
 | 
						|
    :param model: The PyTorch model instance
 | 
						|
    :param model_path: The path of saved optimized model
 | 
						|
 | 
						|
    :return: The optimized model.
 | 
						|
 | 
						|
    >>> # Example 1:
 | 
						|
    >>> # Take ChatGLM2-6B model as an example
 | 
						|
    >>> # Make sure you have saved the optimized model by calling 'save_low_bit'
 | 
						|
    >>> from ipex_llm.optimize import low_memory_init, load_low_bit
 | 
						|
    >>> with low_memory_init(): # Fast and low cost by loading model on meta device
 | 
						|
    >>>     model = AutoModel.from_pretrained(saved_dir,
 | 
						|
    >>>                                       torch_dtype="auto",
 | 
						|
    >>>                                       trust_remote_code=True)
 | 
						|
    >>> model = load_low_bit(model, saved_dir) # Load the optimized model
 | 
						|
 | 
						|
    >>> # Example 2:
 | 
						|
    >>> # If the model doesn't fit 'low_memory_init' method,
 | 
						|
    >>> # alternatively, you can obtain the model instance through traditional loading method.
 | 
						|
    >>> # Take OpenAI Whisper model as an example
 | 
						|
    >>> # Make sure you have saved the optimized model by calling 'save_low_bit'
 | 
						|
    >>> from ipex_llm.optimize import load_low_bit
 | 
						|
    >>> model = whisper.load_model('tiny') # A model instance through traditional loading method
 | 
						|
    >>> model = load_low_bit(model, saved_dir) # Load the optimized model
 | 
						|
    """
 | 
						|
    low_bit = low_bit_sanity_check(model_path)
 | 
						|
    invalidInputError(isinstance(model, torch.nn.Module),
 | 
						|
                      "model should be a instance of "
 | 
						|
                      f"`torch.nn.Module`, but got {type(model)} at last.")
 | 
						|
    if low_bit:
 | 
						|
        invalidInputError(isinstance(model, torch.nn.Module),
 | 
						|
                          "model should be an instance of `torch.nn.Module`, "
 | 
						|
                          f"but got {type(model)} at last.")
 | 
						|
        invalidInputError(model.device.type in ('cpu', 'meta'),
 | 
						|
                          "Expect model on device `cpu` or `meta`, "
 | 
						|
                          f"but got device type {model.device.type}")
 | 
						|
        qtype = ggml_tensor_qtype[low_bit]
 | 
						|
        model = ggml_convert_low_bit(model, qtype=qtype, convert_shape_only=True)
 | 
						|
 | 
						|
    resolved_archive_file, is_sharded = extract_local_archive_file(model_path, subfolder="")
 | 
						|
    if is_sharded:
 | 
						|
        # For now only shards transformers models
 | 
						|
        # can run in this branch.
 | 
						|
        resolved_archive_file, _ = \
 | 
						|
            get_local_shard_files(model_path,
 | 
						|
                                  resolved_archive_file,
 | 
						|
                                  subfolder="")
 | 
						|
    else:
 | 
						|
        resolved_archive_file = [os.path.join(model_path, PYTORCH_MODEL_NAME)]
 | 
						|
 | 
						|
    for model_file in resolved_archive_file:
 | 
						|
        state_dict = torch.load(model_file)
 | 
						|
        for param_name, param in state_dict.items():
 | 
						|
            set_module_tensor_to_device(model, param_name, "cpu", param)
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_convert=None,
 | 
						|
                   cpu_embedding=False, lightweight_bmm=False, **kwargs):
 | 
						|
    """
 | 
						|
    A method to optimize any pytorch model.
 | 
						|
 | 
						|
    :param model: The original PyTorch model (nn.module)
 | 
						|
    :param low_bit: str value, options are ``'sym_int4'``, ``'asym_int4'``, ``'sym_int5'``,
 | 
						|
                    ``'asym_int5'``, ``'sym_int8'``, ``'nf3'``, ``'nf4'``, ``'fp4'``,
 | 
						|
                    ``'fp8'``, ``'fp8_e4m3'``, ``'fp8_e5m2'``, ``'fp16'`` or ``'bf16'``,
 | 
						|
                    ``'sym_int4'`` means symmetric int 4, ``'asym_int4'`` means
 | 
						|
                    asymmetric int 4, ``'nf4'`` means 4-bit NormalFloat, etc.
 | 
						|
                    Relevant low bit optimizations will be applied to the model.
 | 
						|
    :param optimize_llm: Whether to further optimize llm model. Default to be ``True``.
 | 
						|
    :param modules_to_not_convert: list of str value, modules (nn.Module) that are skipped
 | 
						|
        when conducting model optimizations. Default to be ``None``.
 | 
						|
    :param cpu_embedding: Whether to replace the Embedding layer, may need to set it
 | 
						|
        to ``True`` when running BigDL-LLM on GPU on Windows. Default to be ``False``.
 | 
						|
    :param lightweight_bmm: Whether to replace the torch.bmm ops, may need to set it
 | 
						|
        to ``True`` when running BigDL-LLM on GPU on Windows. Default to be ``False``.
 | 
						|
 | 
						|
    :return: The optimized model.
 | 
						|
 | 
						|
    >>> # Take OpenAI Whisper model as an example
 | 
						|
    >>> from ipex_llm import optimize_model
 | 
						|
    >>> model = whisper.load_model('tiny') # Load whisper model under pytorch framework
 | 
						|
    >>> model = optimize_model(model) # With only one line code change
 | 
						|
    >>> # Use the optimized model without other API change
 | 
						|
    >>> result = model.transcribe(audio, verbose=True, language="English")
 | 
						|
    >>> # (Optional) you can also save the optimized model by calling 'save_low_bit'
 | 
						|
    >>> model.save_low_bit(saved_dir)
 | 
						|
    """
 | 
						|
    invalidInputError(low_bit in ggml_tensor_qtype,
 | 
						|
                      f"Unknown load_in_low_bit value: {low_bit}, expected:"
 | 
						|
                      f" sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
 | 
						|
    invalidInputError(isinstance(model, torch.nn.Module),
 | 
						|
                      "model should be an instance of "
 | 
						|
                      f"`torch.nn.Module`, but got {type(model)} at last.")
 | 
						|
    invalidInputError(model.device.type in ('cpu', 'meta'),
 | 
						|
                      "Expect model on device `cpu` or `meta`, "
 | 
						|
                      f"but got device type {model.device.type}")
 | 
						|
    if kwargs.pop("replace_embedding", False):
 | 
						|
        warnings.warn("replace_embedding is deprecated and will be removed in a future version,"
 | 
						|
                      " please use cpu_embedding instead.", FutureWarning)
 | 
						|
        cpu_embedding = True
 | 
						|
    if low_bit == "fp16":
 | 
						|
        torch_dtype = kwargs.get("torch_dtype", None)
 | 
						|
        if torch_dtype is not None and torch_dtype != torch.float16:
 | 
						|
            invalidInputError(False,
 | 
						|
                              "Please use torch_dtype=torch.float16 when setting low_bit='fp16'.")
 | 
						|
        else:
 | 
						|
            torch_dtype = torch.float16
 | 
						|
    else:
 | 
						|
        torch_dtype = kwargs.get("torch_dtype", "auto")
 | 
						|
    qtype = ggml_tensor_qtype[low_bit]
 | 
						|
    model = ggml_convert_low_bit(model,
 | 
						|
                                 qtype=qtype,
 | 
						|
                                 torch_dtype=torch_dtype,
 | 
						|
                                 optimize_model=optimize_llm,
 | 
						|
                                 modules_to_not_convert=modules_to_not_convert,
 | 
						|
                                 cpu_embedding=cpu_embedding,
 | 
						|
                                 lightweight_bmm=lightweight_bmm)
 | 
						|
    # add save_low_bit to pretrained model dynamically
 | 
						|
    import types
 | 
						|
    model._bigdl_config = dict()
 | 
						|
    model._bigdl_config["bigdl_transformers_low_bit"] = low_bit
 | 
						|
    model.save_low_bit = types.MethodType(_save_low_bit, model)
 | 
						|
    return model
 |