* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			89 lines
		
	
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
from ipex_llm import optimize_model
 | 
						|
from ipex_llm.optimize import low_memory_init, load_low_bit
 | 
						|
from transformers import AutoModelForCausalLM, LlamaTokenizer
 | 
						|
 | 
						|
# you could tune the prompt based on your own model,
 | 
						|
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
 | 
						|
LLAMA2_PROMPT_FORMAT = """### HUMAN:
 | 
						|
{prompt}
 | 
						|
 | 
						|
### RESPONSE:
 | 
						|
"""
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
 | 
						|
                        help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--low-bit', type=str, default="sym_int4",
 | 
						|
                        choices=['sym_int4', 'asym_int4', 'sym_int5', 'asym_int5', 'sym_int8'],
 | 
						|
                        help='The quantization type the model will convert to.')
 | 
						|
    parser.add_argument('--save-path', type=str, default=None,
 | 
						|
                        help='The path to save the low-bit model.')
 | 
						|
    parser.add_argument('--load-path', type=str, default=None,
 | 
						|
                        help='The path to load the low-bit model.')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    low_bit = args.low_bit
 | 
						|
    load_path = args.load_path
 | 
						|
    if load_path:
 | 
						|
        # Fast and low cost by loading model on meta device
 | 
						|
        with low_memory_init():
 | 
						|
            model = AutoModelForCausalLM.from_pretrained(load_path, torch_dtype="auto", trust_remote_code=True)
 | 
						|
        model = load_low_bit(model, load_path)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(load_path)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = optimize_model(model, low_bit=low_bit)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    save_path = args.save_path
 | 
						|
    if save_path:
 | 
						|
        model.save_low_bit(save_path)
 | 
						|
        tokenizer.save_pretrained(save_path)
 | 
						|
        print(f"Model and tokenizer are saved to {save_path}")
 | 
						|
 | 
						|
    # please save/load model before you run it on GPU
 | 
						|
    model = model.to('xpu')
 | 
						|
    
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
        prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						|
        # ipex model needs a warmup, then inference time can be accurate
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
 | 
						|
        st = time.time()
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
        output = output.cpu()
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(output_str)
 |