* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm  | 
			||
|---|---|---|
| .. | ||
| generate.py | ||
| README.md | ||
Qwen1.5
In this directory, you will find examples on how you could use BigDL-LLM optimize_model API to accelerate Qwen1.5 models. For illustration purposes, we utilize the Qwen/Qwen1.5-7B-Chat as reference Qwen1.5 model.
Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to here for more information.
Example: Predict Tokens using generate() API
In the example generate.py, we show a basic use case for a Qwen1.5 model to predict the next N tokens using generate() API, with BigDL-LLM INT4 optimizations.
1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to here.
After installing conda, create a Python environment for BigDL-LLM:
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
pip install transformers==4.37.0 # install transformers which supports Qwen2
2. Run
After setting up the Python environment, you could run the example by following steps.
2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
python ./generate.py --prompt 'What is AI?'
More information about arguments can be found in Arguments Info section. The expected output can be found in Sample Output section.
2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to here for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
# set BigDL-LLM env variables
source bigdl-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
More information about arguments can be found in Arguments Info section. The expected output can be found in Sample Output section.
2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the Qwen1.5 to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'Qwen/Qwen1.5-7B-Chat'.--prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'AI是什么?'.--n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be32.
2.3 Sample Output
Qwen/Qwen1.5-7B-Chat
Inference time: xxxx s
-------------------- Prompt --------------------
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
AI是什么?<|im_end|>
<|im_start|>assistant
-------------------- Output --------------------
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
AI是什么?<|im_end|>
<|im_start|>assistant
AI(Artificial Intelligence)是指由计算机程序实现的智能,它使机器能够模拟人类的思考、学习和决策过程,从而解决各种复杂
Inference time: xxxx s
-------------------- Prompt --------------------
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
What is AI?<|im_end|>
<|im_start|>assistant
-------------------- Output --------------------
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
What is AI?<|im_end|>
<|im_start|>assistant
AI, or artificial intelligence, refers to the simulation of human intelligence in machines that are programmed to think, learn, and make decisions like humans. It involves the