ipex-llm/python/llm/example/GPU
Zhicun 9d8ba64c0d
Llamaindex: add tokenizer_id and support chat (#10590)
* add tokenizer_id

* fix

* modify

* add from_model_id and from_mode_id_low_bit

* fix typo and add comment

* fix python code style

---------

Co-authored-by: pengyb2001 <284261055@qq.com>
2024-04-07 13:51:34 +08:00
..
Applications Update pip install to use --extra-index-url for ipex package (#10557) 2024-03-28 09:56:23 +08:00
Deepspeed-AutoTP Replace with IPEX-LLM in example comments (#10671) 2024-04-07 13:29:51 +08:00
HF-Transformers-AutoModels Replace with IPEX-LLM in example comments (#10671) 2024-04-07 13:29:51 +08:00
LangChain Add tokenizer_id in Langchain (#10588) 2024-04-03 14:25:35 +08:00
LlamaIndex Llamaindex: add tokenizer_id and support chat (#10590) 2024-04-07 13:51:34 +08:00
LLM-Finetuning Replace with IPEX-LLM in example comments (#10671) 2024-04-07 13:29:51 +08:00
ModelScope-Models Replace with IPEX-LLM in example comments (#10671) 2024-04-07 13:29:51 +08:00
Pipeline-Parallel-Inference Replace with IPEX-LLM in example comments (#10671) 2024-04-07 13:29:51 +08:00
PyTorch-Models Replace with IPEX-LLM in example comments (#10671) 2024-04-07 13:29:51 +08:00
Speculative-Decoding Update pip install to use --extra-index-url for ipex package (#10557) 2024-03-28 09:56:23 +08:00
vLLM-Serving Fix vllm print error message issue (#10664) 2024-04-05 15:08:13 -07:00
README.md Update_document by heyang (#30) 2024-03-25 10:06:02 +08:00

IPEX-LLM Examples on Intel GPU

This folder contains examples of running IPEX-LLM on Intel GPU:

  • Applications: running LLM applications (such as autogen) on IPEX-LLM
  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on IPEX-LLM (using the standard AutoModel APIs)
  • LLM-Finetuning: running finetuning (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with IPEX-LLM low-bit optimized models) on Intel GPUs
  • LangChain: running LangChain applications on IPEX-LLM
  • PyTorch-Models: running any PyTorch model on IPEX-LLM (with "one-line code change")
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel GPUs
  • ModelScope-Models: running ModelScope model with IPEX-LLM on Intel GPUs

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.