* add lookahead in allinone * delete save to csv in run_transformer_int4_gpu * change lookup to lookahead * fix the error of add model.peak_memory * Set transformer_int4_gpu as the default option * add comment of transformer_int4_fp16_lookahead_gpu  | 
			||
|---|---|---|
| .. | ||
| all-in-one | ||
| ceval | ||
| harness | ||
| perplexity | ||
| whisper | ||
| README.md | ||
Benchmark tool for transformers int4 (separate 1st token and rest)
benchmark_util.py is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest on CPU and GPU.
CPU Usage
Just put this file into your benchmark directory, and then wrap your transformer int4 model with BenchmarkWrapper (model = BenchmarkWrapper(model)).
Take chatglm-6b as an example:
import torch
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
from ipex_llm.utils.benchmark_util import BenchmarkWrapper
model_path ='THUDM/chatglm-6b'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
model = BenchmarkWrapper(model, do_print=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "今天睡不着怎么办"
 
with torch.inference_mode():
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
    output_str = tokenizer.decode(output[0], skip_special_tokens=True)
Output will be like:
=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========
GPU Usage
Inference on single GPU
Just put this file into your benchmark directory, and then wrap your transformer int4 model with BenchmarkWrapper (model = BenchmarkWrapper(model)).
Take chatglm-6b as an example:
import torch
import intel_extension_for_pytorch as ipex
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
from ipex_llm.utils.benchmark_util import BenchmarkWrapper
model_path ='THUDM/chatglm-6b'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
model = model.to('xpu')
model = BenchmarkWrapper(model, do_print=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "今天睡不着怎么办"
 
with torch.inference_mode():
    # wamup two times as use ipex
    for i in range(2):
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
        output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
    # collect performance data now
    for i in range(5):
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
        output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
Inference on multi GPUs
Similarly, put this file into your benchmark directory, and then wrap your optimized model with BenchmarkWrapper (model = BenchmarkWrapper(model)).
For example, just need to apply following code patch on Deepspeed Autotp example code to calculate 1st and the rest token performance:
 import torch
 import transformers
 import deepspeed
+from ipex_llm.utils.benchmark_util import BenchmarkWrapper
 
 def get_int_from_env(env_keys, default):
     """Returns the first positive env value found in the `env_keys` list or the default."""
@@ -98,6 +99,7 @@ if __name__ == '__main__':
     init_distributed()
 
     print(model)
+    model = BenchmarkWrapper(model, do_print=True)
 
     # Load tokenizer
     tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
Sample Output
Output will be like:
=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========