ipex-llm/python/llm/test/benchmark/perplexity/ppl_csv_to_html.py
2024-04-12 13:30:16 +08:00

216 lines
8 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Python program to convert CSV to HTML Table
import os
import sys
import argparse
import pandas as pd
from pathlib import Path
def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow', is_last=False):
if isinstance(val, float):
if val > max:
return 'background-color: %s' % color1
elif val <= -max:
return 'background-color: %s' % color2
elif val != 0.0 and is_last:
return 'background-color: %s' % color3
else:
return ''
def nonzero_min(lst):
non_zero_lst = [num for num in lst if num > 0.0]
return min(non_zero_lst) if non_zero_lst else None
def is_diffs_within_normal_range(diff_ppl_result, threshold=5.0):
return not any(diff < (-threshold) for diff in diff_ppl_result if isinstance(diff, float))
def add_to_dict(dict, key, value):
if key not in dict:
dict[key] = []
dict[key].append(value)
def best_in_dict(dict, key, value):
if key in dict:
best_value = nonzero_min(dict[key])
if best_value < value or value <= 0.0:
return best_value
return value
return value
def create_fp16_dict(fp16_path):
fp16_df = pd.read_csv(fp16_path)
fp16_dict = {}
for _, row in fp16_df.iterrows():
model = row['Model']
fp16_dict[model] = {
'ppl_result': "{:.2f}".format(row['ppl_result'])
}
return fp16_dict
def calculate_percentage_difference(current, fp16):
if fp16 != 'N/A' and current != 'N/A' and float(fp16) != 0:
return (float(current) - float(fp16)) / float(fp16) * 100
else:
return 'N/A'
def main():
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
help="The directory which stores the .csv file", default="/home/arda/yibo/BigDL/python/llm/dev/benchmark/harness")
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
help="the threshold of highlight values", default=3.0)
parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
help="the baseline path which stores the baseline.csv file")
args = parser.parse_args()
# fp16.csv is downloaded previously under the parent folder of the folder_path
parent_dir = Path(args.folder_path).parent
fp16_path = os.path.join(parent_dir, 'fp16.csv')
fp16_dict = create_fp16_dict(fp16_path)
csv_files = []
for file_name in os.listdir(args.folder_path):
file_path = os.path.join(args.folder_path, file_name)
if os.path.isfile(file_path) and file_name.endswith(".csv"):
csv_files.append(file_path)
csv_files.sort(reverse=True)
highlight_threshold=args.threshold
latest_csv = pd.read_csv(csv_files[0], index_col=0)
daily_html=csv_files[0].split(".")[0]+".html"
# Reset index
latest_csv.reset_index(inplace=True)
diffs_within_normal_range = True
# Add display of FP16 values for each model and add percentage difference column
task = 'ppl_result'
latest_csv[f'{task}_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A'))
latest_csv[f'{task}_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row[task], row[f'{task}_FP16']), axis=1)
print(csv_files)
if len(csv_files)>1:
if args.baseline_path:
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
else:
previous_csv = pd.read_csv(csv_files[1], index_col=0)
last_ppl_result=['']*len(latest_csv.index)
diff_ppl_result=['']*len(latest_csv.index)
ppl_result = 'ppl_result'
csv_dict = {}
for csv_file in csv_files:
current_csv = pd.read_csv(csv_file, index_col=0)
for current_csv_ind,current_csv_row in current_csv.iterrows():
current_csv_model=current_csv_row['Model'].strip()
current_csv_precision=current_csv_row['Precision'].strip()
current_csv_model_ppl_result=current_csv_model+'-'+current_csv_precision+'-'+'ppl_result'
add_to_dict(csv_dict, current_csv_model_ppl_result, current_csv_row[ppl_result])
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
latest_csv_model=latest_csv_row['Model'].strip()
latest_csv_precision=latest_csv_row['Precision'].strip()
latest_ppl_result=latest_csv_row[ppl_result]
print("This is the latest_ppl_result",latest_ppl_result)
in_previous_flag=False
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
previous_csv_model=previous_csv_row['Model'].strip()
previous_csv_precision=previous_csv_row['Precision'].strip()
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
previous_ppl_result=previous_csv_row[ppl_result]
print("This is the previous_ppl_result", previous_ppl_result)
if previous_ppl_result > 0.0:
last_ppl_result[latest_csv_ind]=previous_ppl_result
diff_ppl_result[latest_csv_ind]=round((latest_ppl_result-previous_ppl_result)*100/previous_ppl_result,2)
in_previous_flag=True
if not in_previous_flag:
last_ppl_result[latest_csv_ind]=pd.NA
diff_ppl_result[latest_csv_ind]=pd.NA
latest_csv.insert(loc=6,column='last_ppl_result',value=last_ppl_result)
latest_csv.insert(loc=7,column='ppl_result_diff_last(%)',value=diff_ppl_result)
diffs_within_normal_range = is_diffs_within_normal_range(diff_ppl_result, threshold=highlight_threshold)
subset1='ppl_result_diff_last(%)'
# columns will be different: columns_sec={'ppl_result': '{:.2f}'}
columns={'ppl_result': '{:.2f}', 'last_ppl_result': '{:.2f}', 'ppl_result_diff_last(%)': '{:.2f}'}
# This is the same
latest_csv.drop('Index', axis=1, inplace=True)
# subset is different
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=True), subset=['ppl_result_diff_last(%)'])
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=['ppl_result_diff_FP16(%)'])
else:
columns={'ppl_result': '{:.2f}'}
latest_csv.drop('Index', axis=1, inplace=True)
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=['ppl_result_diff_FP16(%)'])
# add css style to restrict width and wrap text
styled_df.set_table_styles([{
'selector': 'th, td',
'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
}], overwrite=False)
html_output = styled_df.set_table_attributes("border=1").to_html()
with open(daily_html, 'w') as f:
f.write(html_output)
if args.baseline_path and not diffs_within_normal_range:
print("The diffs are outside the normal range: %" + str(highlight_threshold))
return 1
return 0
if __name__ == "__main__":
sys.exit(main())