87 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			87 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
from transformers.generation import GenerationConfig
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import os
 | 
						|
import argparse
 | 
						|
from ipex_llm import optimize_model
 | 
						|
torch.manual_seed(1234)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
 | 
						|
                        help='The huggingface repo id for the Qwen-VL model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict')
 | 
						|
    
 | 
						|
    current_path = os.path.dirname(os.path.abspath(__file__))
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path  
 | 
						|
        
 | 
						|
    # Load model
 | 
						|
    # For successful IPEX-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path, 
 | 
						|
                                                 load_in_4bit=True, 
 | 
						|
                                                 device_map="cpu", 
 | 
						|
                                                 trust_remote_code=True, 
 | 
						|
                                                 modules_to_not_convert=['c_fc', 'out_proj'],
 | 
						|
                                                 torch_dtype=torch.float32
 | 
						|
                                                 )
 | 
						|
 | 
						|
    # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
 | 
						|
    model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    # Session ID
 | 
						|
    session_id = 1
 | 
						|
 | 
						|
    while True:
 | 
						|
      print('-'*20, 'Session %d' % session_id, '-'*20)
 | 
						|
      image_input = input(f' Please input a picture: ')
 | 
						|
      if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge
 | 
						|
         break
 | 
						|
 | 
						|
      text_input = input(f' Please enter the text: ')
 | 
						|
      if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge
 | 
						|
         break
 | 
						|
      
 | 
						|
      if session_id == 1:
 | 
						|
         history = None
 | 
						|
 | 
						|
      all_input = [{'image': image_input}, {'text': text_input}]
 | 
						|
      input_list = [_input for _input in all_input if list(_input.values())[0] != '']
 | 
						|
 | 
						|
      if len(input_list) == 0:
 | 
						|
         print("Input list should not be empty. Please try again with valid input.")
 | 
						|
         continue
 | 
						|
      
 | 
						|
      query = tokenizer.from_list_format(input_list)
 | 
						|
      response, history = model.chat(tokenizer, query = query, history = history)
 | 
						|
 | 
						|
      print('-'*10, 'Response', '-'*10)
 | 
						|
      print(response, '\n')
 | 
						|
 | 
						|
      image = tokenizer.draw_bbox_on_latest_picture(response, history)
 | 
						|
      if image is not None:
 | 
						|
         image.save(os.path.join(current_path, f'Session_{session_id}.png'), )
 | 
						|
 | 
						|
      session_id += 1
 |