149 lines
5.6 KiB
Python
149 lines
5.6 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import torch
|
|
import transformers
|
|
import time
|
|
import argparse
|
|
import torch.distributed as dist
|
|
|
|
from fastapi import FastAPI, HTTPException
|
|
from pydantic import BaseModel
|
|
import uvicorn
|
|
|
|
def get_int_from_env(env_keys, default):
|
|
"""Returns the first positive env value found in the `env_keys` list or the default."""
|
|
for e in env_keys:
|
|
val = int(os.environ.get(e, -1))
|
|
if val >= 0:
|
|
return val
|
|
return int(default)
|
|
|
|
local_rank = get_int_from_env(["LOCAL_RANK","PMI_RANK"], "0")
|
|
world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1")
|
|
os.environ["RANK"] = str(local_rank)
|
|
os.environ["WORLD_SIZE"] = str(world_size)
|
|
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
|
|
|
|
global model, tokenizer
|
|
|
|
def load_model(model_path, low_bit):
|
|
|
|
from ipex_llm import optimize_model
|
|
|
|
import torch
|
|
import time
|
|
import argparse
|
|
|
|
from transformers import AutoModelForCausalLM # export AutoModelForCausalLM from transformers so that deepspeed use it
|
|
from transformers import LlamaTokenizer, AutoTokenizer
|
|
import deepspeed
|
|
from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator
|
|
from deepspeed.accelerator import set_accelerator, get_accelerator
|
|
from intel_extension_for_deepspeed import XPU_Accelerator
|
|
|
|
# First use CPU as accelerator
|
|
# Convert to deepspeed model and apply IPEX-LLM optimization on CPU to decrease GPU memory usage
|
|
current_accel = CPU_Accelerator()
|
|
set_accelerator(current_accel)
|
|
global model, tokenizer
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
device_map={"": "cpu"},
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.float16,
|
|
trust_remote_code=True,
|
|
use_cache=True)
|
|
|
|
model = deepspeed.init_inference(
|
|
model,
|
|
mp_size=world_size,
|
|
dtype=torch.bfloat16,
|
|
replace_method="auto",
|
|
)
|
|
|
|
# Use IPEX-LLM `optimize_model` to convert the model into optimized low bit format
|
|
# Convert the rest of the model into float16 to reduce allreduce traffic
|
|
model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit).to(torch.float16)
|
|
|
|
# Next, use XPU as accelerator to speed up inference
|
|
current_accel = XPU_Accelerator()
|
|
set_accelerator(current_accel)
|
|
|
|
# Move model back to xpu
|
|
model = model.to(f'xpu:{local_rank}')
|
|
|
|
# Modify backend related settings
|
|
if world_size > 1:
|
|
get_accelerator().set_device(local_rank)
|
|
dist_backend = get_accelerator().communication_backend_name()
|
|
import deepspeed.comm.comm
|
|
deepspeed.comm.comm.cdb = None
|
|
from deepspeed.comm.comm import init_distributed
|
|
init_distributed()
|
|
|
|
# Load tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
def generate_text(prompt: str, n_predict: int = 32):
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'xpu:{local_rank}')
|
|
output = model.generate(input_ids,
|
|
max_new_tokens=n_predict,
|
|
use_cache=True)
|
|
torch.xpu.synchronize()
|
|
return output
|
|
|
|
|
|
class PromptRequest(BaseModel):
|
|
prompt: str
|
|
n_predict: int = 32
|
|
|
|
app = FastAPI()
|
|
|
|
@app.post("/generate/")
|
|
async def generate(prompt_request: PromptRequest):
|
|
if local_rank == 0:
|
|
object_list = [prompt_request]
|
|
dist.broadcast_object_list(object_list, src=0)
|
|
start_time = time.time()
|
|
output = generate_text(object_list[0].prompt, object_list[0].n_predict)
|
|
generate_time = time.time() - start_time
|
|
output = output.cpu()
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
return {"generated_text": output_str, "generate_time": f'{generate_time:.3f}s'}
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging DeepSpeed-AutoTP')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--low-bit', type=str, default='sym_int4',
|
|
help='The quantization type the model will convert to.')
|
|
parser.add_argument('--port', type=int, default=8000,
|
|
help='The port number on which the server will run.')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
low_bit = args.low_bit
|
|
load_model(model_path, low_bit)
|
|
if local_rank == 0:
|
|
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
|
else:
|
|
while True:
|
|
object_list = [None]
|
|
dist.broadcast_object_list(object_list, src=0)
|
|
output = generate_text(object_list[0].prompt, object_list[0].n_predict)
|
|
|