* first commit of transformer int4 and pipeline * basic examples temp save for embeddings support embeddings and docqa exaple * fix based on comment * small fix  | 
			||
|---|---|---|
| .. | ||
| native_int4 | ||
| transformers_int4 | ||
| README.md | ||
Langchain examples
The examples here shows how to use langchain with bigdl-llm.
Install bigdl-llm
Follow the instructions in Install.
Install Required Dependencies for langchain examples.
pip install langchain==0.0.184
pip install -U chromadb==0.3.25
pip install -U typing_extensions==4.5.0
Note that typing_extensions==4.5.0 is required, or you may encounter error TypeError: dataclass_transform() got an unexpected keyword argument 'field_specifiers' when running the examples.
Convert Models using bigdl-llm
Follow the instructions in Convert model.
Run the examples
1. Streaming Chat
python ./streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
arguments info:
-m CONVERTED_MODEL_PATH: required, path to the converted model-x MODEL_FAMILY: required, the model family of the model specified in-m, available options arellama,gptneoxandbloom-q QUESTION: question to ask. Default isWhat is AI?.-t THREAD_NUM: specify the number of threads to use for inference. Default is2.
2. Question Answering over Docs
python ./docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
arguments info:
-m CONVERTED_MODEL_PATH: required, path to the converted model in above step-x MODEL_FAMILY: required, the model family of the model specified in-m, available options arellama,gptneoxandbloom-i DOC_PATH: required, path to the input document-q QUESTION: question to ask. Default isWhat is AI?.-c CONTEXT_SIZE: specify the maximum context size. Default is2048.-t THREAD_NUM: specify the number of threads to use for inference. Default is2.