ipex-llm/python/llm/dev/benchmark/perplexity/run_wikitext.py
RyuKosei 1da1f1dd0e
Combine two versions of run_wikitext.py (#11597)
* Combine two versions of run_wikitext.py

* Update run_wikitext.py

* Update run_wikitext.py

* aligned the format

* update error display

* simplified argument parser

---------

Co-authored-by: jenniew <jenniewang123@gmail.com>
2024-07-29 15:56:16 +08:00

112 lines
4.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is adapted from
# https://huggingface.co/docs/transformers/en/perplexity
#
import argparse
import torch
from tqdm import tqdm
from datasets import concatenate_datasets, load_dataset
from ipex_llm.utils.common import invalidInputError
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", required=True, type=str)
parser.add_argument("--dataset", type=str, default=None)
parser.add_argument("--data_path", type=str, default=None)
parser.add_argument("--chunk_size", type=int, default=512)
parser.add_argument("--stride", type=int, default=0)
parser.add_argument("--device", type=str, default="xpu")
parser.add_argument("--precision", type=str, default="sym_int4")
parser.add_argument("--use-cache", action="store_true")
parser.add_argument("--max_length", type=int, default=None)
args = parser.parse_args()
if args.precision == "fp16": # ipex fp16
from transformers import AutoModelForCausalLM
if "xpu" in args.device:
import intel_extension_for_pytorch as ipex
model = AutoModelForCausalLM.from_pretrained(args.model_path, use_cache=args.use_cache, trust_remote_code=True)
model = model.half()
else: # ipex-llm
from ipex_llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(args.model_path, load_in_low_bit=args.precision,
use_cache=args.use_cache, trust_remote_code=True)
model = model.half()
model = model.to(args.device)
model = model.eval()
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
if args.dataset:
def parse_kwargs(kwstr):
kvpair = [item.split('=') for item in kwstr.split(',') if item != ""]
return {k:v for k, v in kvpair}
test = load_dataset(**parse_kwargs(args.dataset), split="test")["text"]
encodings = tokenizer("\n\n".join(test), return_tensors="pt")
elif args.data_path:
with open(args.data_path, "rb") as f:
data = f.read()
encodings = tokenizer(data.decode("utf-8").strip("\n"), return_tensors="pt")
else:
raise invalidInputError(False, "Must specify either dataset or datapath.")
if not args.max_length:
try:
max_length = model.config.max_position_embeddings
except:
max_length = model.config.seq_length # max_length in config of chatglm is 'seq_length'
else:
max_length = args.max_length
stride = args.chunk_size if args.stride <= 0 else args.stride
seq_len = encodings.input_ids.size(1)
num_chunks = seq_len // stride
nlls = []
prev_end_loc = 0
for i in tqdm(range(num_chunks)):
begin_loc = i * stride
if args.stride > 0:
end_loc = min(begin_loc + max_length, seq_len)
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
else:
end_loc = begin_loc + stride
trg_len = -stride//2
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(args.device)
if args.stride == 0: input_ids[:, 0] = tokenizer.bos_token_id
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
with torch.no_grad():
outputs = model(input_ids, labels=target_ids)
# loss is calculated using CrossEntropyLoss which averages over valid labels
# N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
# to the left by 1.
neg_log_likelihood = outputs.loss
nlls.append(neg_log_likelihood)
if "xpu" in args.device:
torch.xpu.empty_cache()
prev_end_loc = end_loc
if end_loc == seq_len:
break
ppl = torch.exp(torch.stack(nlls).mean())
print("Final ppl estimate: {}".format(ppl.item()))