* add qlora finetunning example * update readme * update example * remove merge.py and update readme
		
			
				
	
	
		
			86 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			86 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import os
 | 
						|
 | 
						|
import transformers
 | 
						|
from transformers import LlamaTokenizer
 | 
						|
 | 
						|
from peft import LoraConfig
 | 
						|
from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training
 | 
						|
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
						|
from datasets import load_dataset
 | 
						|
import argparse
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf",
 | 
						|
                        help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--dataset', type=str, default="Abirate/english_quotes")
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    dataset_path = args.dataset
 | 
						|
    tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    data = load_dataset(dataset_path)
 | 
						|
    def merge(row):
 | 
						|
        row['prediction'] = row['quote'] + ' ->: ' + str(row['tags'])
 | 
						|
        return row
 | 
						|
    data['train'] = data['train'].map(merge)
 | 
						|
    data = data.map(lambda samples: tokenizer(samples["prediction"]), batched=True)
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                 load_in_low_bit="sym_int4",
 | 
						|
                                                 optimize_model=False,
 | 
						|
                                                 torch_dtype=torch.float16,
 | 
						|
                                                 modules_to_not_convert=["lm_head"], )
 | 
						|
    model = model.to('cpu')
 | 
						|
    model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=False)
 | 
						|
    model.enable_input_require_grads()
 | 
						|
    config = LoraConfig(
 | 
						|
        r=8,
 | 
						|
        lora_alpha=32,
 | 
						|
        target_modules=["q_proj", "k_proj", "v_proj"],
 | 
						|
        lora_dropout=0.05,
 | 
						|
        bias="none",
 | 
						|
        task_type="CAUSAL_LM"
 | 
						|
    )
 | 
						|
    model = get_peft_model(model, config)
 | 
						|
    tokenizer.pad_token_id = 0
 | 
						|
    tokenizer.padding_side = "left"
 | 
						|
    trainer = transformers.Trainer(
 | 
						|
        model=model,
 | 
						|
        train_dataset=data["train"],
 | 
						|
        args=transformers.TrainingArguments(
 | 
						|
            per_device_train_batch_size=4,
 | 
						|
            gradient_accumulation_steps=1,
 | 
						|
            warmup_steps=20,
 | 
						|
            max_steps=200,
 | 
						|
            learning_rate=2e-4,
 | 
						|
            save_steps=100,
 | 
						|
            bf16=True,
 | 
						|
            logging_steps=20,
 | 
						|
            output_dir="outputs",
 | 
						|
            optim="adamw_hf",  # paged_adamw_8bit is not supported yet
 | 
						|
            # gradient_checkpointing=True, # can further reduce memory but slower
 | 
						|
        ),
 | 
						|
        data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
 | 
						|
    )
 | 
						|
    model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
 | 
						|
    result = trainer.train()
 | 
						|
    print(result)
 |