* fix: remove BIGDL_LLM_XMX_DISABLED in mddocs * fix: remove set SYCL_CACHE_PERSISTENT=1 in example * fix: remove BIGDL_LLM_XMX_DISABLED in workflows * fix: merge igpu and A-series Graphics * fix: remove set BIGDL_LLM_XMX_DISABLED=1 in example * fix: remove BIGDL_LLM_XMX_DISABLED in workflows * fix: merge igpu and A-series Graphics * fix: textual adjustment * fix: textual adjustment * fix: textual adjustment  | 
			||
|---|---|---|
| .. | ||
| 8k.txt | ||
| generate.py | ||
| README.md | ||
Llama2-32k
In this directory, you will find examples on how you could apply IPEX-LLM INT4/FP8 optimizations on Llama2-32K models on Intel GPUs. For illustration purposes, we utilize the togethercomputer/Llama-2-7B-32K-Instruct as reference Llama2-32K models.
0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
Example: Predict Tokens using generate() API
In the example generate.py, we show a basic use case for a Llama2 model to predict the next N tokens using generate() API, with IPEX-LLM INT4/FP8 optimizations on Intel GPUs.
1. Install
1.1 Installation on Linux
We suggest using conda to manage environment:
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
1.2 Installation on Windows
We suggest using conda to manage environment:
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
2. Configures OneAPI environment variables for Linux
Note
Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
source /opt/intel/oneapi/setvars.sh
3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
Note: Please note that
libtcmalloc.socan be installed byconda install -c conda-forge -y gperftools=2.10.
For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
3.2 Configurations for Windows
For Intel iGPU and Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1
Note
For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
4. Running examples
4.1 Using simple prompt
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --low-bit LOW_BIT
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the Llama2 model (e.g.togethercomputer/Llama-2-7B-32K-Instruct) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'togethercomputer/Llama-2-7B-32K-Instruct'.--prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'What is AI?'.--n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be32.--low-bit LOW_BIT: argument defining which low bit optimization to use. Options are sym_int4 or fp8. It is default to besym_int4.
4.2 Using long context input prompt
You can set the prompt argument to be a .txt file path containing the long context prompt text. An example command using the 8k input size prompt we provide is given below:
python ./generate.py --repo-id-or-model-path togethercomputer/Llama-2-7B-32K-Instruct --prompt 8k.txt
Note: If you need to run longer input or use less memory, please set
IPEX_LLM_LOW_MEM=1, which will enable memory optimization and may slightly affect the latency performance.
Sample Output
togethercomputer/Llama-2-7B-32K-Instruct
Inference time: xxxx s
-------------------- Prompt --------------------
<s>[INST] <<SYS>>
<</SYS>>
What is AI? [/INST]
-------------------- Output --------------------
[INST] <<SYS>>
<</SYS>>
What is AI? [/INST]
AI is a broad field of study that deals with the creation of intelligent agents, which are systems that can perform tasks that typically require human intelligence