ipex-llm/python/llm/portable-zip/chat.py
binbin Deng 8ef8e25178 LLM: improve response speed in multi-turn chat (#9299)
* update

* fix stop word and add chatglm2 support

* remove system prompt
2023-11-01 10:30:44 +08:00

186 lines
7.7 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py
# which is licensed under the MIT license:
#
# MIT License
#
# Copyright (c) 2023 MIT HAN Lab
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
import argparse
import sys
# todo: support more model class
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig
from transformers import TextIteratorStreamer
from transformers.tools.agents import StopSequenceCriteria
from transformers.generation.stopping_criteria import StoppingCriteriaList
from colorama import Fore
from bigdl.llm import optimize_model
from kv_cache import StartRecentKVCache
HUMAN_ID = "<human>"
BOT_ID = "<bot>"
@torch.no_grad()
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
outputs = model(
input_ids=input_ids,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids = [pred_token_idx.item()]
pos = 0
for _ in range(max_gen_len - 1):
outputs = model(
input_ids=pred_token_idx,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids.append(pred_token_idx.item())
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True,
clean_up_tokenization_spaces=True,
spaces_between_special_tokens=False)
now = len(generated_text) - 1
if now > pos:
if '\n<' in generated_text:
break
else:
print("".join(generated_text[pos:now]), end="", flush=True)
pos = now
if pred_token_idx == tokenizer.eos_token_id:
break
print(" ".join(generated_text[pos:]).strip('\n<'), flush=True)
return past_key_values
@torch.no_grad()
def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512):
past_key_values = None
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
if user_input == "stop": # let's stop the conversation when user input "stop"
break
prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} "
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
seq_len = input_ids.shape[1]
if kv_cache is not None:
space_needed = seq_len + max_gen_len
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
past_key_values = greedy_generate(
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len
)
@torch.no_grad()
def chatglm2_stream_chat(model, tokenizer):
chat_history = []
past_key_values = None
current_length = 0
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
max_past_length = 2048
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
if user_input == "stop": # let's stop the conversation when user input "stop"
break
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
prompt = f"问:{user_input}\n答:"
for response, chat_history, past_key_values in model.stream_chat(tokenizer, prompt,
history=chat_history,
stopping_criteria=stopping_criteria,
past_key_values=past_key_values,
return_past_key_values=True):
print(response[current_length:], end="", flush=True)
current_length = len(response)
if past_key_values[0][0].shape[0] > max_past_length:
# To avoid out of memory, only keep recent key_values
new_values_list = []
for i in range(len(past_key_values)):
new_value = []
for val in past_key_values[i]:
new_v = val[-max_past_length:]
new_value.append(new_v)
new_values_list.append(tuple(new_value))
past_key_values = tuple(new_values_list)
def auto_select_model(model_name):
try:
try:
model = AutoModelForCausalLM.from_pretrained(model_path,
low_cpu_mem_usage=True,
torch_dtype="auto",
trust_remote_code=True,
use_cache=True)
except:
model = AutoModel.from_pretrained(model_path,
low_cpu_mem_usage=True,
torch_dtype="auto",
trust_remote_code=True,
use_cache=True)
except:
print("Sorry, the model you entered is not supported in installer.")
sys.exit()
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, help="path to an llm")
args = parser.parse_args()
model_path = args.model_path
model = auto_select_model(model_path)
model = optimize_model(model)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
chatglm2_stream_chat(model=model, tokenizer=tokenizer)
else:
kv_cache = StartRecentKVCache()
stream_chat(model=model,
tokenizer=tokenizer,
kv_cache=kv_cache)