* Update README in LLM GPU Examples * Update reference of Intel GPU * add cpu_embedding=True in comment * small fixes * update GPU/README.md and add explanation for cpu_embedding=True * address comments * fix small typos * add backtick for cpu_embedding=True * remove extra backtick in the doc * add period mark * update readme
		
			
				
	
	
		
			80 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						||
# Copyright 2016 The BigDL Authors.
 | 
						||
#
 | 
						||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
# you may not use this file except in compliance with the License.
 | 
						||
# You may obtain a copy of the License at
 | 
						||
#
 | 
						||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						||
#
 | 
						||
# Unless required by applicable law or agreed to in writing, software
 | 
						||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
# See the License for the specific language governing permissions and
 | 
						||
# limitations under the License.
 | 
						||
#
 | 
						||
 | 
						||
import torch
 | 
						||
import time
 | 
						||
import argparse
 | 
						||
import numpy as np
 | 
						||
 | 
						||
from bigdl.llm.transformers import AutoModel
 | 
						||
from transformers import AutoTokenizer
 | 
						||
 | 
						||
# you could tune the prompt based on your own model,
 | 
						||
# here the prompt tuning refers to https://huggingface.co/THUDM/chatglm2-6b/blob/main/modeling_chatglm.py#L1007
 | 
						||
CHATGLM_V2_PROMPT_FORMAT = "问:{prompt}\n\n答:"
 | 
						||
 | 
						||
if __name__ == '__main__':
 | 
						||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM2 model')
 | 
						||
    parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm2-6b",
 | 
						||
                        help='The huggingface repo id for the ChatGLM2 model to be downloaded'
 | 
						||
                             ', or the path to the huggingface checkpoint folder')
 | 
						||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
						||
                        help='Prompt to infer')
 | 
						||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						||
                        help='Max tokens to predict')
 | 
						||
 | 
						||
    args = parser.parse_args()
 | 
						||
    model_path = args.repo_id_or_model_path
 | 
						||
 | 
						||
    # Load model in 4 bit,
 | 
						||
    # which convert the relevant layers in the model into INT4 format
 | 
						||
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						||
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						||
    model = AutoModel.from_pretrained(model_path,
 | 
						||
                                      load_in_4bit=True,
 | 
						||
                                      optimize_model=True,
 | 
						||
                                      trust_remote_code=True,
 | 
						||
                                      use_cache=True)
 | 
						||
    model = model.to('xpu')
 | 
						||
 | 
						||
    # Load tokenizer
 | 
						||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						||
                                              trust_remote_code=True)
 | 
						||
 | 
						||
    # Generate predicted tokens
 | 
						||
    with torch.inference_mode():
 | 
						||
        prompt = CHATGLM_V2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
						||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						||
        # ipex model needs a warmup, then inference time can be accurate
 | 
						||
        output = model.generate(input_ids,
 | 
						||
                                max_new_tokens=args.n_predict)
 | 
						||
 | 
						||
        # start inference
 | 
						||
        st = time.time()
 | 
						||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
						||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
						||
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
						||
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
						||
        output = model.generate(input_ids,
 | 
						||
                                max_new_tokens=args.n_predict)
 | 
						||
        torch.xpu.synchronize()
 | 
						||
        end = time.time()
 | 
						||
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						||
        print(f'Inference time: {end-st} s')
 | 
						||
        print('-'*20, 'Prompt', '-'*20)
 | 
						||
        print(prompt)
 | 
						||
        print('-'*20, 'Output', '-'*20)
 | 
						||
        print(output_str)
 |