ipex-llm/python/llm/example/GPU
Jin Qiao 97a38958bd LLM: add CodeLlama CPU and GPU examples (#9338)
* LLM: add codellama CPU pytorch examples

* LLM: add codellama CPU transformers examples

* LLM: add codellama GPU transformers examples

* LLM: add codellama GPU pytorch examples

* LLM: add codellama in readme

* LLM: add LLaVA link
2023-11-02 15:34:25 +08:00
..
Deepspeed-AutoTP Add deepspeed autotp example readme (#9289) 2023-10-27 13:04:38 -07:00
HF-Transformers-AutoModels LLM: add CodeLlama CPU and GPU examples (#9338) 2023-11-02 15:34:25 +08:00
PyTorch-Models LLM: add CodeLlama CPU and GPU examples (#9338) 2023-11-02 15:34:25 +08:00
QLoRA-FineTuning LLM: update QLoRA example about accelerate version(#9314) 2023-10-31 13:54:38 +08:00
README.md LLM: update example layout (#9046) 2023-10-09 15:36:39 +08:00

BigDL-LLM Examples on Intel GPU

This folder contains examples of running BigDL-LLM on Intel GPU:

System Support

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation.

Step 1, please refer to our driver installation for general purpose GPU capabilities.

Note

: IPEX 2.0.110+xpu requires Intel GPU Driver version is Stable 647.21.

Step 2, you also need to download and install Intel® oneAPI Base Toolkit. OneMKL and DPC++ compiler are needed, others are optional.

Note

: IPEX 2.0.110+xpu requires Intel® oneAPI Base Toolkit's version >= 2023.2.0.