* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			61 lines
		
	
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			61 lines
		
	
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
from ipex_llm.transformers import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer
 | 
						|
from transformers.generation import GenerationConfig
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import os
 | 
						|
import argparse
 | 
						|
from ipex_llm import optimize_model
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for InternLM-XComposer model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="internlm/internlm-xcomposer-vl-7b",
 | 
						|
                        help='The huggingface repo id for the InternLM-XComposer model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--image-path', type=str, required=True,
 | 
						|
                        help='Image path for the input image that the chat will focus on')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=512, help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    image = args.image_path
 | 
						|
 | 
						|
    # Load model
 | 
						|
    # For successful BigDL-LLM optimization on InternLM-XComposer, skip the 'qkv' module during optimization
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path, device='cpu', load_in_4bit=True,
 | 
						|
                                                 trust_remote_code=True, modules_to_not_convert=['qkv'])
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    model.tokenizer = tokenizer
 | 
						|
 | 
						|
    history = None
 | 
						|
    while True:
 | 
						|
        try:
 | 
						|
            user_input = input("User: ")
 | 
						|
        except EOFError:
 | 
						|
            user_input = ""
 | 
						|
        if not user_input:
 | 
						|
            print("exit...")
 | 
						|
            break
 | 
						|
 | 
						|
        response, history = model.chat(text=user_input, image=image , history = history)
 | 
						|
        print(f'Bot: {response}', end="")
 | 
						|
        image = None
 | 
						|
 |