93 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
# This file is adapted from
 | 
						|
# https://huggingface.co/docs/transformers/en/perplexity
 | 
						|
#
 | 
						|
 | 
						|
import argparse
 | 
						|
import torch
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
 | 
						|
parser = argparse.ArgumentParser()
 | 
						|
parser.add_argument("--model_path", required=True, type=str)
 | 
						|
parser.add_argument("--data_path", type=str, default='wikitext-2-raw-v1/wikitext-2-raw/wiki.test.raw')
 | 
						|
parser.add_argument("--chunk_size", type=int, default=512)
 | 
						|
parser.add_argument("--stride", type=int, default=0)
 | 
						|
parser.add_argument("--device", type=str, default="xpu")
 | 
						|
parser.add_argument("--precision", type=str, default="sym_int4")
 | 
						|
parser.add_argument("--use-cache", action="store_true")
 | 
						|
args = parser.parse_args()
 | 
						|
 | 
						|
if args.precision == "fp16":  # ipex fp16
 | 
						|
    from transformers import AutoModelForCausalLM
 | 
						|
    if "xpu" in args.device:
 | 
						|
        import intel_extension_for_pytorch as ipex
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(args.model_path, use_cache=args.use_cache, trust_remote_code=True)
 | 
						|
    model = model.half()
 | 
						|
else:  # ipex-llm
 | 
						|
    from ipex_llm.transformers import AutoModelForCausalLM
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(args.model_path, load_in_low_bit=args.precision,
 | 
						|
                                                 use_cache=args.use_cache, trust_remote_code=True)
 | 
						|
    model = model.half()
 | 
						|
model = model.to(args.device)
 | 
						|
model = model.eval()
 | 
						|
 | 
						|
with open(args.data_path, "rb") as f:
 | 
						|
    data = f.read()
 | 
						|
 | 
						|
from transformers import AutoTokenizer
 | 
						|
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
 | 
						|
encodings = tokenizer(data.decode("utf-8").strip("\n"), return_tensors="pt")
 | 
						|
 | 
						|
max_length = model.config.max_position_embeddings
 | 
						|
stride = args.chunk_size if args.stride <= 0 else args.stride
 | 
						|
seq_len = encodings.input_ids.size(1)
 | 
						|
num_chunks = seq_len // stride
 | 
						|
 | 
						|
nlls = []
 | 
						|
prev_end_loc = 0
 | 
						|
for i in tqdm(range(num_chunks)):
 | 
						|
    begin_loc = i * stride
 | 
						|
    if args.stride > 0:
 | 
						|
        end_loc = min(begin_loc + max_length, seq_len)
 | 
						|
        trg_len = end_loc - prev_end_loc  # may be different from stride on last loop
 | 
						|
    else:
 | 
						|
        end_loc = begin_loc + stride
 | 
						|
        trg_len = -stride//2
 | 
						|
    input_ids = encodings.input_ids[:, begin_loc:end_loc].to(args.device)
 | 
						|
    if args.stride == 0: input_ids[:, 0] = tokenizer.bos_token_id
 | 
						|
    target_ids = input_ids.clone()
 | 
						|
    target_ids[:, :-trg_len] = -100
 | 
						|
 | 
						|
    with torch.no_grad():
 | 
						|
        outputs = model(input_ids, labels=target_ids)
 | 
						|
 | 
						|
        # loss is calculated using CrossEntropyLoss which averages over valid labels
 | 
						|
        # N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
 | 
						|
        # to the left by 1.
 | 
						|
        neg_log_likelihood = outputs.loss
 | 
						|
 | 
						|
    nlls.append(neg_log_likelihood)
 | 
						|
    if "xpu" in args.device:
 | 
						|
        torch.xpu.empty_cache()
 | 
						|
 | 
						|
    prev_end_loc = end_loc
 | 
						|
    if end_loc == seq_len:
 | 
						|
        break
 | 
						|
 | 
						|
ppl = torch.exp(torch.stack(nlls).mean())
 | 
						|
print("Final ppl estimate: {}".format(ppl.item()))
 |