ipex-llm/python/llm/dev/benchmark/all-in-one/save.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

74 lines
3.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# this code is to support converting of model in load bit
# for performance tests using load_low_bit
import omegaconf
import time
import os
import sys
import gc
from run import LLAMA_IDS, CHATGLM_IDS, LLAVA_IDS, get_model_path
current_dir = os.path.dirname(os.path.realpath(__file__))
def save_model_in_low_bit(repo_id,
local_model_hub,
low_bit):
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer
model_path = get_model_path(repo_id, local_model_hub)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in CHATGLM_IDS:
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
trust_remote_code=True, use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
use_cache=True).eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAVA_IDS:
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
sys.path.append(rf"{llava_repo_dir}")
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
trust_remote_code=True, use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
trust_remote_code=True, use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
print(">> loading of and converting of model costs {}s".format(end - st))
model.save_low_bit(model_path+'-'+low_bit)
tokenizer.save_pretrained(model_path+'-'+low_bit)
del model
gc.collect()
if __name__ == '__main__':
from omegaconf import OmegaConf
conf = OmegaConf.load(f'{current_dir}/config.yaml')
for model in conf.repo_id:
save_model_in_low_bit(repo_id=model,
local_model_hub=conf['local_model_hub'],
low_bit=conf['low_bit'])