* Add GLM4-Edge-V examples * polish readme * revert wrong changes * polish readme * polish readme * little polish in reference info and indent * Small fix and sample output updates * Update main readme --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
		
			
				
	
	
		
			122 lines
		
	
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			122 lines
		
	
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import os
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
import requests
 | 
						|
 | 
						|
from ipex_llm.transformers import AutoModelForCausalLM
 | 
						|
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for glm-edge-v model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str,
 | 
						|
                        help='The Hugging Face or ModelScope repo id for the glm-edge-v model to be downloaded'
 | 
						|
                             ', or the path to the checkpoint folder')
 | 
						|
    parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
						|
                        help='The URL or path to the image to infer')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
    parser.add_argument('--modelscope', action="store_true", default=False, 
 | 
						|
                        help="Use models from modelscope")
 | 
						|
    
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    if args.modelscope:
 | 
						|
        from modelscope import AutoTokenizer, AutoImageProcessor
 | 
						|
        model_hub = 'modelscope'
 | 
						|
    else:
 | 
						|
        from transformers import AutoTokenizer, AutoImageProcessor
 | 
						|
        model_hub = 'huggingface'
 | 
						|
    
 | 
						|
    model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
 | 
						|
        ("ZhipuAI/glm-edge-v-5b" if args.modelscope else "THUDM/glm-edge-v-5b")
 | 
						|
    image_path = args.image_url_or_path
 | 
						|
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                 load_in_4bit=True,
 | 
						|
                                                 optimize_model=True,
 | 
						|
                                                 trust_remote_code=True,
 | 
						|
                                                 modules_to_not_convert=["vision"],
 | 
						|
                                                 use_cache=True,
 | 
						|
                                                 model_hub=model_hub)
 | 
						|
    model = model.half().to('xpu')
 | 
						|
    
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    query = args.prompt
 | 
						|
    if os.path.exists(image_path):
 | 
						|
       image = Image.open(image_path)
 | 
						|
    else:
 | 
						|
       image = Image.open(requests.get(image_path, stream=True).raw)
 | 
						|
 | 
						|
    image_processor = AutoImageProcessor.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        pixel_values = image_processor(images=[image], return_tensors='pt').pixel_values
 | 
						|
        pixel_values = pixel_values.to('xpu')
 | 
						|
 | 
						|
        # The following code for generation is adapted from https://huggingface.co/THUDM/glm-edge-v-5b#inference
 | 
						|
        messages = [{
 | 
						|
            "role": "user", 
 | 
						|
            "content": [{"type": "image"}, 
 | 
						|
                        {"type": "text", 
 | 
						|
                         "text": args.prompt}]
 | 
						|
        }]
 | 
						|
 | 
						|
        inputs = tokenizer.apply_chat_template(
 | 
						|
            messages, 
 | 
						|
            add_generation_prompt=True, 
 | 
						|
            return_dict=True, 
 | 
						|
            tokenize=True, 
 | 
						|
            return_tensors="pt"
 | 
						|
        )
 | 
						|
        inputs = inputs.to('xpu')
 | 
						|
        
 | 
						|
        generate_kwargs = {
 | 
						|
            **inputs,
 | 
						|
            "pixel_values": pixel_values,
 | 
						|
            "max_new_tokens": args.n_predict,
 | 
						|
        }
 | 
						|
        
 | 
						|
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
        output = model.generate(**generate_kwargs)
 | 
						|
 | 
						|
        st = time.time()
 | 
						|
        output = model.generate(**generate_kwargs)
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
 | 
						|
        output_str = tokenizer.decode(
 | 
						|
            output[0][len(inputs["input_ids"][0]):], 
 | 
						|
            skip_special_tokens=True
 | 
						|
        )
 | 
						|
        
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Prompt', '-'*20)
 | 
						|
        print(args.prompt)
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(output_str)
 |