* add correctness test on arc for llama model * modify layer name * add falcon ut * refactor and add ut for falcon model * modify lambda positions and update docs * replace loading pre input with last decodelayer output * switch lower bound to single model instead of using the common one * make the code implementation simple * fix gpu action allocation memory issue
		
			
				
	
	
		
			163 lines
		
	
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			163 lines
		
	
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import os
 | 
						|
import pytest
 | 
						|
 | 
						|
import torch
 | 
						|
from transformers import LlamaTokenizer, AutoTokenizer
 | 
						|
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
 | 
						|
 | 
						|
 | 
						|
device = os.environ['DEVICE']
 | 
						|
print(f'Running on {device}')
 | 
						|
if device == 'xpu':
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
 | 
						|
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
						|
 | 
						|
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
 | 
						|
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
 | 
						|
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
 | 
						|
    ])
 | 
						|
def test_optimize_model(Model, Tokenizer, model_path):
 | 
						|
    tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
						|
 | 
						|
    model = Model.from_pretrained(model_path,
 | 
						|
                                load_in_4bit=True,
 | 
						|
                                optimize_model=False,
 | 
						|
                                trust_remote_code=True)
 | 
						|
    model = model.to(device)
 | 
						|
    logits_base_model = (model(input_ids)).logits
 | 
						|
    model.to('cpu')  # deallocate gpu memory
 | 
						|
 | 
						|
    model = Model.from_pretrained(model_path,
 | 
						|
                                load_in_4bit=True,
 | 
						|
                                optimize_model=True,
 | 
						|
                                trust_remote_code=True)
 | 
						|
    model = model.to(device)
 | 
						|
    logits_optimized_model = (model(input_ids)).logits
 | 
						|
    model.to('cpu')
 | 
						|
    
 | 
						|
    diff = abs(logits_base_model - logits_optimized_model).flatten()
 | 
						|
 | 
						|
    assert any(diff) is False
 | 
						|
 | 
						|
class Test_Optimize_Gpu_Model:
 | 
						|
    def setup(self):
 | 
						|
 | 
						|
        self.layer_outputs = []
 | 
						|
        self.pre_layer_outputs = []
 | 
						|
 | 
						|
    def run_optimize_gpu_model(self, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound):
 | 
						|
        def forward_hook(module, input, output, layer_name):
 | 
						|
            self.layer_outputs.append(output)
 | 
						|
 | 
						|
        def pre_forward_hook(module, input, output, layer_name):
 | 
						|
            self.pre_layer_outputs.append(output)
 | 
						|
 | 
						|
        tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
						|
 | 
						|
        model = Model.from_pretrained(model_path,
 | 
						|
                                      load_in_4bit=True,
 | 
						|
                                      optimize_model=False,
 | 
						|
                                      trust_remote_code=True)
 | 
						|
        model = model.to(device)
 | 
						|
 | 
						|
        for layer_name, layer_module in model.named_modules():
 | 
						|
            if layer_name == layer_norm:
 | 
						|
                layer_module.register_forward_hook(
 | 
						|
                    lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
 | 
						|
                                                                                          output, layer_name))
 | 
						|
            if layer_name == self_attn:
 | 
						|
                layer_module.register_forward_hook(
 | 
						|
                    lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
						|
                                                                                      output, layer_name))
 | 
						|
        logits_base_model = (model(input_ids)).logits
 | 
						|
        # the list `layer_output` has only one element.
 | 
						|
        layer_tensor = self.layer_outputs.pop()
 | 
						|
        model.to('cpu')
 | 
						|
 | 
						|
        opt_model = Model.from_pretrained(model_path,
 | 
						|
                                          load_in_4bit=True,
 | 
						|
                                          optimize_model=True,
 | 
						|
                                          trust_remote_code=True)
 | 
						|
        opt_model = opt_model.to(device)
 | 
						|
 | 
						|
 | 
						|
        def replace_forward_hook(module, input, output, layer_name):
 | 
						|
            output = self.pre_layer_outputs[0]
 | 
						|
            return output
 | 
						|
 | 
						|
        for layer_name, layer_module in opt_model.named_modules():
 | 
						|
            if layer_name == layer_norm:
 | 
						|
                layer_module.register_forward_hook(
 | 
						|
                    lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
 | 
						|
                                                                                              output, layer_name))
 | 
						|
            if layer_name == self_attn:
 | 
						|
                layer_module.register_forward_hook(
 | 
						|
                    lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
						|
                                                                                      output, layer_name))
 | 
						|
        logits_optimized_model = (opt_model(input_ids)).logits
 | 
						|
        # the list `layer_output` has only one element.
 | 
						|
        opt_layer_tensor = self.layer_outputs[0]
 | 
						|
        opt_model.to('cpu')
 | 
						|
 | 
						|
        attn_output_diff = []
 | 
						|
        for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
 | 
						|
            if t1 is not None and t2 is not None:
 | 
						|
                if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
 | 
						|
                    # 'attn_output' is of type torch.Tensor.
 | 
						|
                    attn_output_diff.append(t1 - t2)
 | 
						|
                else:
 | 
						|
                    # 'past_key_value'is of type tuple as default.
 | 
						|
                    for i, (t3, t4) in enumerate(zip(t1, t2)):
 | 
						|
                        attn_output_diff.append(t3 - t4)
 | 
						|
 | 
						|
        max_diff_tensor = [torch.max(item).item() for item in attn_output_diff]
 | 
						|
        assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
 | 
						|
 | 
						|
 | 
						|
    def test_falcon_gpu_model(self):
 | 
						|
 | 
						|
        Model = AutoModelForCausalLM
 | 
						|
        Tokenizer = AutoTokenizer
 | 
						|
        model_path = os.environ.get('FALCON_7B_ORIGIN_PATH')
 | 
						|
        # currently only compare the output of the last self-attention layer.
 | 
						|
        layer_norm = "transformer.h.31.input_layernorm"
 | 
						|
        self_attn = "transformer.h.31.self_attention"
 | 
						|
        lower_bound = 0
 | 
						|
 | 
						|
        self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
						|
 | 
						|
 | 
						|
    def test_llama_gpu_model(self):
 | 
						|
 | 
						|
        Model = AutoModelForCausalLM
 | 
						|
        Tokenizer = AutoTokenizer
 | 
						|
        model_path = os.environ.get('LLAMA2_7B_ORIGIN_PATH')
 | 
						|
        # currently only compare the output of the last self-attention layer.
 | 
						|
        layer_norm = "model.layers.31.input_layernorm"
 | 
						|
        self_attn = "model.layers.31.self_attn"
 | 
						|
        lower_bound = 5e-2
 | 
						|
 | 
						|
        self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    pytest.main([__file__])
 |