ipex-llm/python/llm/example/CPU
Yuwen Hu 8c36b5bdde
Add qwen2 example (#11252)
* Add GPU example for Qwen2

* Update comments in README

* Update README for Qwen2 GPU example

* Add CPU example for Qwen2

Sample Output under README pending

* Update generate.py and README for CPU Qwen2

* Update GPU example for Qwen2

* Small update

* Small fix

* Add Qwen2 table

* Update README for Qwen2 CPU and GPU

Update sample output under README

---------

Co-authored-by: Zijie Li <michael20001122@gmail.com>
2024-06-07 10:29:33 +08:00
..
Applications Fix IPEX auto importer (#11192) 2024-06-04 16:57:18 +08:00
Deepspeed-AutoTP Fix IPEX auto importer (#11192) 2024-06-04 16:57:18 +08:00
HF-Transformers-AutoModels Add qwen2 example (#11252) 2024-06-07 10:29:33 +08:00
LangChain Further Modify CPU example (#11081) 2024-05-21 13:55:47 +08:00
LlamaIndex Llamaindex: add tokenizer_id and support chat (#10590) 2024-04-07 13:51:34 +08:00
ModelScope-Models LLM: Modify CPU Installation Command for most examples (#11049) 2024-05-17 15:52:20 +08:00
Native-Models Remove chatglm_C Module to Eliminate LGPL Dependency (#11178) 2024-05-31 17:03:11 +08:00
PyTorch-Models Add qwen2 example (#11252) 2024-06-07 10:29:33 +08:00
QLoRA-FineTuning Fix LoRA tokenizer for Llama and chatglm (#11186) 2024-06-03 15:35:38 +08:00
Speculative-Decoding Miniconda/Anaconda -> Miniforge update in examples (#11194) 2024-06-04 10:14:02 +08:00
vLLM-Serving LLM: Fix vLLM CPU version error (#11206) 2024-06-04 19:10:23 +08:00
README.md Further Modify CPU example (#11081) 2024-05-21 13:55:47 +08:00

IPEX-LLM Examples on Intel CPU

This folder contains examples of running IPEX-LLM on Intel CPU:

  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on IPEX-LLM (using the standard AutoModel APIs)
  • QLoRA-FineTuning: running QLoRA finetuning using IPEX-LLM on intel CPUs
  • vLLM-Serving: running vLLM serving framework on intel CPUs (with IPEX-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with IPEX-LLM low-bit optimized models)
  • LangChain: running LangChain applications on IPEX-LLM
  • Applications: running LLM applications (such as agent, streaming-llm) on BigDl-LLM
  • PyTorch-Models: running any PyTorch model on IPEX-LLM (with "one-line code change")
  • Native-Models: converting & running LLM in llama/chatglm/bloom/gptneox/starcoder model family using native (cpp) implementation
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel CPUs
  • ModelScope-Models: running ModelScope model with IPEX-LLM on Intel CPUs

System Support

Hardware:

  • Intel® Core™ processors
  • Intel® Xeon® processors

Operating System:

  • Ubuntu 20.04 or later (glibc>=2.17)
  • CentOS 7 or later (glibc>=2.17)
  • Windows 10/11, with or without WSL

Best Known Configuration on Linux

For better performance, it is recommended to set environment variables on Linux with the help of IPEX-LLM:

pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
source ipex-llm-init