ipex-llm/docker/llm/inference/cpu/docker
Shaojun Liu 429bf1ffeb
Change: Use cn mirror for PyTorch extension installation to resolve network issues (#12559)
* Update Dockerfile

* Update Dockerfile

* Update Dockerfile
2024-12-17 14:22:50 +08:00
..
Dockerfile Change: Use cn mirror for PyTorch extension installation to resolve network issues (#12559) 2024-12-17 14:22:50 +08:00
README.md update docker image tag to 2.2.0-SNAPSHOT (#11904) 2024-08-23 13:57:41 +08:00
start-notebook.sh Update_docker by heyang (#29) 2024-03-25 10:05:46 +08:00

Build/Use IPEX-LLM cpu image

Build Image

docker build \
  --build-arg http_proxy=.. \
  --build-arg https_proxy=.. \
  --build-arg no_proxy=.. \
  --rm --no-cache -t intelanalytics/ipex-llm-cpu:2.2.0-SNAPSHOT .

Use the image for doing cpu inference

An example could be:

#/bin/bash
export DOCKER_IMAGE=intelanalytics/ipex-llm-cpu:2.2.0-SNAPSHOT

sudo docker run -itd \
        --net=host \
        --cpuset-cpus="0-47" \
        --cpuset-mems="0" \
        --memory="32G" \
        --name=CONTAINER_NAME \
        --shm-size="16g" \
        $DOCKER_IMAGE

After the container is booted, you could get into the container through docker exec.

To run inference using IPEX-LLM using cpu, you could refer to this documentation.

Use chat.py

chat.py can be used to initiate a conversation with a specified model. The file is under directory '/llm'.

You can download models and bind the model directory from host machine to container when start a container.

Here is an example:

export DOCKER_IMAGE=intelanalytics/ipex-llm-cpu:2.2.0-SNAPSHOT
export MODEL_PATH=/home/llm/models

sudo docker run -itd \
        --net=host \
        --cpuset-cpus="0-47" \
        --cpuset-mems="0" \
        --memory="32G" \
        --name=CONTAINER_NAME \
        --shm-size="16g" \
        -v $MODEL_PATH:/llm/models/
        $DOCKER_IMAGE

After entering the container through docker exec, you can run chat.py by:

cd /llm
python chat.py --model-path YOUR_MODEL_PATH

In the example above, it can be:

cd /llm
python chat.py --model-path /llm/models/MODEL_NAME