81 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
# This file is adapted from https://github.com/tloen/alpaca-lora/blob/main/export_hf_checkpoint.py
 | 
						|
#
 | 
						|
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
 | 
						|
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
import os
 | 
						|
 | 
						|
import torch
 | 
						|
import transformers
 | 
						|
from transformers import LlamaTokenizer  # noqa: F402
 | 
						|
from bigdl.llm.transformers.qlora import PeftModel
 | 
						|
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
						|
import argparse
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf",
 | 
						|
                        help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--adapter_path', type=str,)
 | 
						|
    parser.add_argument('--output_path', type=str,)
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    base_model = model_path = args.repo_id_or_model_path
 | 
						|
    adapter_path = args.adapter_path
 | 
						|
    tokenizer = LlamaTokenizer.from_pretrained(base_model)
 | 
						|
 | 
						|
    base_model = AutoModelForCausalLM.from_pretrained(
 | 
						|
        base_model,
 | 
						|
        # load_in_low_bit="nf4", # should load the orignal model
 | 
						|
        torch_dtype=torch.float16,
 | 
						|
        device_map={"": "cpu"},
 | 
						|
    )
 | 
						|
 | 
						|
    lora_model = PeftModel.from_pretrained(
 | 
						|
        base_model,
 | 
						|
        adapter_path,
 | 
						|
        device_map={"": "cpu"},
 | 
						|
        torch_dtype=torch.float16,
 | 
						|
    )
 | 
						|
 | 
						|
    # merge weights - new merging method from peft
 | 
						|
    lora_model = lora_model.merge_and_unload()
 | 
						|
 | 
						|
    lora_model.train(False)
 | 
						|
 | 
						|
    lora_model_sd = lora_model.state_dict()
 | 
						|
    deloreanized_sd = {
 | 
						|
        k.replace("base_model.model.", ""): v
 | 
						|
        for k, v in lora_model_sd.items()
 | 
						|
        if "lora" not in k
 | 
						|
    }
 | 
						|
 | 
						|
    base_model.save_pretrained(args.output_path, state_dict=deloreanized_sd)
 | 
						|
    tokenizer.save_pretrained(args.output_path)
 |