152 lines
No EOL
5.7 KiB
Python
152 lines
No EOL
5.7 KiB
Python
#
|
||
# Copyright 2016 The BigDL Authors.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
|
||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||
# physically located elsewhere.
|
||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||
# only search the first bigdl package and end up finding only one sub-package.
|
||
|
||
# Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant
|
||
|
||
|
||
from langchain import LLMChain, PromptTemplate
|
||
from ipex_llm.langchain.llms import TransformersLLM
|
||
from langchain.memory import ConversationBufferWindowMemory
|
||
from ipex_llm.transformers import AutoModelForSpeechSeq2Seq
|
||
from transformers import WhisperProcessor
|
||
import speech_recognition as sr
|
||
import numpy as np
|
||
import pyttsx3
|
||
import argparse
|
||
import time
|
||
|
||
english_template = """
|
||
{history}
|
||
Q: {human_input}
|
||
A:"""
|
||
|
||
chinese_template = """{history}\n\n问:{human_input}\n\n答:"""
|
||
|
||
|
||
template_dict = {
|
||
"english": english_template,
|
||
"chinese": chinese_template
|
||
}
|
||
|
||
llm_load_methods = (
|
||
TransformersLLM.from_model_id,
|
||
TransformersLLM.from_model_id_low_bit,
|
||
)
|
||
|
||
def prepare_chain(args):
|
||
|
||
llm_model_path = args.llm_model_path
|
||
|
||
# Use a easy prompt could bring good-enough result
|
||
# For Chinese Prompt
|
||
# template = """{history}\n\n问:{human_input}\n\n答:"""
|
||
template = template_dict[args.language]
|
||
prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
|
||
|
||
method_index = 1 if args.directly else 0
|
||
llm = llm_load_methods[method_index](
|
||
model_id=llm_model_path,
|
||
model_kwargs={"temperature": 0,
|
||
"trust_remote_code": True},
|
||
)
|
||
|
||
# Following code are complete the same as the use-case
|
||
voiceassitant_chain = LLMChain(
|
||
llm=llm,
|
||
prompt=prompt,
|
||
verbose=True,
|
||
llm_kwargs={"max_new_tokens":args.max_new_tokens},
|
||
memory=ConversationBufferWindowMemory(k=2),
|
||
)
|
||
|
||
recog_model_path = args.recog_model_path
|
||
processor = WhisperProcessor.from_pretrained(recog_model_path)
|
||
recogn_model = AutoModelForSpeechSeq2Seq.from_pretrained(recog_model_path, load_in_4bit=True)
|
||
recogn_model.config.forced_decoder_ids = None
|
||
forced_decoder_ids = processor.get_decoder_prompt_ids(language=args.language, task="transcribe")
|
||
|
||
return voiceassitant_chain, processor, recogn_model, forced_decoder_ids
|
||
|
||
|
||
def listen(chain):
|
||
|
||
voiceassitant_chain, processor, recogn_model, forced_decoder_ids = chain
|
||
|
||
# engine = pyttsx3.init()
|
||
r = sr.Recognizer()
|
||
with sr.Microphone(device_index=1, sample_rate=16000) as source:
|
||
print("Calibrating...")
|
||
r.adjust_for_ambient_noise(source, duration=5)
|
||
# optional parameters to adjust microphone sensitivity
|
||
# r.energy_threshold = 200
|
||
# r.pause_threshold=0.5
|
||
|
||
print("Okay, go!")
|
||
while 1:
|
||
text = ""
|
||
print("listening now...")
|
||
try:
|
||
audio = r.listen(source, timeout=5, phrase_time_limit=30)
|
||
# refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63
|
||
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
|
||
print("Recognizing...")
|
||
st = time.time()
|
||
input_features = processor(frame_data,
|
||
sampling_rate=audio.sample_rate,
|
||
return_tensors="pt").input_features
|
||
predicted_ids = recogn_model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
||
text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
||
time_0 = time.time() - st
|
||
|
||
except Exception as e:
|
||
unrecognized_speech_text = (
|
||
f"Sorry, I didn't catch that. Exception was: \n {e}"
|
||
)
|
||
text = unrecognized_speech_text
|
||
st = time.time()
|
||
response_text = voiceassitant_chain.predict(human_input=text,
|
||
stop="\n\n")
|
||
print(response_text)
|
||
print(f"Recognized in {time_0}s, Predicted in {time.time() - st}s")
|
||
# engine.say(response_text)
|
||
# engine.runAndWait()
|
||
|
||
|
||
def main(args):
|
||
chain = prepare_chain(args)
|
||
listen(chain)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
parser = argparse.ArgumentParser(description='BigDL-LLM Transformer Int4 Langchain Voice Assistant Example')
|
||
parser.add_argument('-r', '--recog-model-path', type=str, required=True,
|
||
help="the path to the huggingface speech recognition model")
|
||
parser.add_argument('-m','--llm-model-path', type=str, required=True,
|
||
help='the path to the huggingface llm model')
|
||
parser.add_argument('-x','--max-new-tokens', type=int, default=32,
|
||
help='the max new tokens of model tokens input')
|
||
parser.add_argument('-l', '--language', type=str, default="english",
|
||
help='the language to be transcribed')
|
||
parser.add_argument('-d', '--directly', action='store_true',
|
||
help='whether to load low bit model directly')
|
||
args = parser.parse_args()
|
||
|
||
main(args) |