* LLM: add llama2-32K example. * refactor name. * fix comments. * add IPEX_LLM_LOW_MEM notes and update sample output.
		
			
				
	
	
		
			97 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from ipex_llm.transformers import AutoModelForCausalLM
 | 
						|
from transformers import LlamaTokenizer
 | 
						|
 | 
						|
# you could tune the prompt based on your own model,
 | 
						|
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
 | 
						|
DEFAULT_SYSTEM_PROMPT = """\
 | 
						|
"""
 | 
						|
 | 
						|
def get_prompt(message: str, chat_history: list[tuple[str, str]],
 | 
						|
               system_prompt: str) -> str:
 | 
						|
    texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
 | 
						|
    # The first user input is _not_ stripped
 | 
						|
    do_strip = False
 | 
						|
    for user_input, response in chat_history:
 | 
						|
        user_input = user_input.strip() if do_strip else user_input
 | 
						|
        do_strip = True
 | 
						|
        texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
 | 
						|
    message = message.strip() if do_strip else message
 | 
						|
    texts.append(f'{message} [/INST]')
 | 
						|
    return ''.join(texts)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2-32K model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="togethercomputer/Llama-2-7B-32K-Instruct",
 | 
						|
                        help='The huggingface repo id for the Llama2-32K (e.g. `togethercomputer/Llama-2-7B-32K-Instruct`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                 load_in_4bit=True,
 | 
						|
                                                 optimize_model=True,
 | 
						|
                                                 trust_remote_code=True,
 | 
						|
                                                 use_cache=True)
 | 
						|
    model = model.half().to('xpu')
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
        if not args.prompt.endswith('.txt'):
 | 
						|
            prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
						|
        else:
 | 
						|
            with open(args.prompt, 'r') as f:
 | 
						|
                prompt = f.read()
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						|
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
 | 
						|
        # start inference
 | 
						|
        st = time.time()
 | 
						|
        # if your selected model is capable of utilizing previous key/value attentions
 | 
						|
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
						|
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
						|
        # to obtain optimal performance with IPEX-LLM INT4 optimizations
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
        output = output.cpu()
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Prompt', '-'*20)
 | 
						|
        print(prompt)
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(output_str)
 |