102 lines
3.5 KiB
Python
102 lines
3.5 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
"""
|
|
Usage:
|
|
python make_csv.py <input_dir> <output_dir>
|
|
"""
|
|
|
|
import logging
|
|
from pytablewriter import MarkdownTableWriter, LatexTableWriter
|
|
import os
|
|
import json
|
|
import sys
|
|
import csv
|
|
import datetime
|
|
from harness_to_leaderboard import task_to_metric
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def make_csv(result_dict, output_path=None):
|
|
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
|
file_name = f'results_{current_date}.csv'
|
|
full_path = os.path.join(output_path, file_name) if output_path else file_name
|
|
print('Writing to', full_path)
|
|
file_name = full_path
|
|
headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]
|
|
|
|
with open(file_name, mode='w', newline='') as csv_file:
|
|
writer = csv.writer(csv_file)
|
|
writer.writerow(headers)
|
|
index = 0
|
|
for model, model_results in result_dict.items():
|
|
for precision, prec_results in model_results.items():
|
|
row = [index, model, precision]
|
|
for task in headers[3:]:
|
|
task_results = prec_results.get(task.lower(), None)
|
|
if task_results is None:
|
|
row.append("")
|
|
else:
|
|
m = task_to_metric[task.lower()]
|
|
results = task_results["results"]
|
|
result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
|
|
row.append("%.2f" % (result[m] * 100))
|
|
writer.writerow(row)
|
|
index += 1
|
|
|
|
|
|
def merge_results(path):
|
|
# loop dirs and subdirs in results dir
|
|
# for each dir, load json files
|
|
print('Read from', path)
|
|
merged_results = dict()
|
|
for dirpath, dirnames, filenames in os.walk(path):
|
|
# skip dirs without files
|
|
if not filenames:
|
|
continue
|
|
for filename in sorted([f for f in filenames if f.endswith("result.json")]):
|
|
path = os.path.join(dirpath, filename)
|
|
model, device, precision, task = dirpath.split('/')[-4:]
|
|
with open(path, "r") as f:
|
|
result_dict = json.load(f)
|
|
if model not in merged_results:
|
|
merged_results[model] = dict()
|
|
if precision not in merged_results[model]:
|
|
merged_results[model][precision] = dict()
|
|
merged_results[model][precision][task] = result_dict
|
|
return merged_results
|
|
|
|
|
|
def main(*args):
|
|
assert len(args) > 2, \
|
|
"""Usage:
|
|
python make_csv.py <input_dir> <output_dir>
|
|
"""
|
|
|
|
input_path = args[1]
|
|
output_path = args[2]
|
|
|
|
|
|
merged_results = merge_results(input_path)
|
|
make_csv(merged_results, output_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# when running from the harness, the first argument is the script name
|
|
# you must name the second argument and the third argument(optional) to be the input_dir and output_dir
|
|
main(*sys.argv)
|