* re-open pr to run on latest runner * re-add examples and ut * rename ut and move deprecate to warning instead of raising an error info * ut fix
		
			
				
	
	
		
			113 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
import unittest
 | 
						|
import os
 | 
						|
import pytest
 | 
						|
import time
 | 
						|
import torch
 | 
						|
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq
 | 
						|
from transformers import AutoTokenizer
 | 
						|
 | 
						|
class TestTransformersAPI(unittest.TestCase):
 | 
						|
 | 
						|
    def setUp(self):        
 | 
						|
        thread_num = os.environ.get('THREAD_NUM')
 | 
						|
        if thread_num is not None:
 | 
						|
            self.n_threads = int(thread_num)
 | 
						|
        else:
 | 
						|
            self.n_threads = 2
 | 
						|
 | 
						|
    def test_transformers_auto_model_int4(self):
 | 
						|
        model_path = os.environ.get('ORIGINAL_CHATGLM2_6B_PATH')
 | 
						|
        model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        input_str = "Tell me the capital of France.\n\n"
 | 
						|
 | 
						|
        with torch.inference_mode():
 | 
						|
            st = time.time()
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
 | 
						|
            output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
            end = time.time()
 | 
						|
        print('Prompt:', input_str)
 | 
						|
        print('Output:', output_str)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        res = 'Paris' in output_str        
 | 
						|
        self.assertTrue(res)
 | 
						|
 | 
						|
    def test_transformers_auto_model_for_causal_lm_int4(self):
 | 
						|
        model_path = os.environ.get('ORIGINAL_REPLIT_CODE_PATH')
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        input_str = 'def hello():\n  print("hello world")\n'
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
 | 
						|
        with torch.inference_mode():
 | 
						|
            
 | 
						|
            st = time.time()
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
 | 
						|
            output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
            end = time.time()
 | 
						|
        print('Prompt:', input_str)
 | 
						|
        print('Output:', output_str)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        res = '\nhello()' in output_str        
 | 
						|
        self.assertTrue(res)
 | 
						|
        
 | 
						|
 | 
						|
    def test_transformers_auto_model_for_speech_seq2seq_int4(self):
 | 
						|
        from transformers import WhisperProcessor, WhisperForConditionalGeneration
 | 
						|
        from datasets import load_from_disk
 | 
						|
        model_path = os.environ.get('ORIGINAL_WHISPER_TINY_PATH')
 | 
						|
        dataset_path = os.environ.get('SPEECH_DATASET_PATH')
 | 
						|
        processor = WhisperProcessor.from_pretrained(model_path)
 | 
						|
        ds = load_from_disk(dataset_path)
 | 
						|
        sample = ds[0]["audio"]
 | 
						|
        input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
 | 
						|
        model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
 | 
						|
        with torch.inference_mode():
 | 
						|
            st = time.time()
 | 
						|
            predicted_ids = model.generate(input_features)
 | 
						|
            # decode token ids to text
 | 
						|
            transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
 | 
						|
            end = time.time()        
 | 
						|
        print('Output:', transcription)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        res = 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
 | 
						|
        self.assertTrue(res)
 | 
						|
 | 
						|
    def test_transformers_chatglm_for_causallm(self):
 | 
						|
        from bigdl.llm.transformers import ChatGLMForCausalLM
 | 
						|
        model_path = os.environ.get('ORIGINAL_CHATGLM2_6B_PATH')
 | 
						|
        model = ChatGLMForCausalLM.from_pretrained(model_path, native=False, trust_remote_code=True, load_in_4bit=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        input_str = "Tell me the capital of France.\n\n"
 | 
						|
 | 
						|
        with torch.inference_mode():
 | 
						|
            st = time.time()
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
 | 
						|
            output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
            end = time.time()
 | 
						|
        print('Prompt:', input_str)
 | 
						|
        print('Output:', output_str)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        res = 'Paris' in output_str        
 | 
						|
        self.assertTrue(res)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    pytest.main([__file__])
 |