ipex-llm/python/llm/example/CPU/PyTorch-Models/Model/openai-whisper/recognize.py
2023-10-09 15:36:39 +08:00

58 lines
2.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import whisper
import time
import librosa
import argparse
from bigdl.llm import optimize_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Recognize Tokens using `transcribe()` API for Openai Whisper model')
parser.add_argument('--model-name', type=str, default="tiny",
help="The model name(tiny, medium, base, etc.) for the Whisper model to be downloaded."
"It is one of the official model names listed by `whisper.available_models()`, or"
"path to a model checkpoint containing the model dimensions and the model state_dict.")
parser.add_argument('--audio-file', type=str, required=True,
help='The path of the audio file to be recognized.')
parser.add_argument('--language', type=str, default="English",
help='language to be transcribed')
args = parser.parse_args()
# Load the input audio
y, sr = librosa.load(args.audio_file)
# Downsample the audio to 16kHz
target_sr = 16000
audio = librosa.resample(y,
orig_sr=sr,
target_sr=target_sr)
# Load whisper model under pytorch framework
model = whisper.load_model(args.model_name)
# With only one line to enable bigdl optimize on a pytorch model
model = optimize_model(model)
st = time.time()
result = model.transcribe(audio, verbose=True, language=args.language)
end = time.time()
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(result["text"])