ipex-llm/python/llm/example/GPU/Deepspeed-AutoTP-FastAPI/serving.py

245 lines
9.5 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import transformers
import time
import argparse
import torch.distributed as dist
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import uvicorn
import asyncio, uuid
from typing import Dict, List, Optional
from transformers.utils import logging
logger = logging.get_logger(__name__)
from benchmark_util import BenchmarkWrapper
def get_int_from_env(env_keys, default):
"""Returns the first positive env value found in the `env_keys` list or the default."""
for e in env_keys:
val = int(os.environ.get(e, -1))
if val >= 0:
return val
return int(default)
global max_num_seqs
global max_num_batched_tokens
local_rank = get_int_from_env(["LOCAL_RANK","PMI_RANK"], "0")
world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1")
os.environ["RANK"] = str(local_rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
global model, tokenizer
def load_model(model_path, low_bit):
from ipex_llm import optimize_model
import torch
import time
import argparse
from transformers import AutoModelForCausalLM # export AutoModelForCausalLM from transformers so that deepspeed use it
from transformers import LlamaTokenizer, AutoTokenizer
import deepspeed
from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator
from deepspeed.accelerator import set_accelerator, get_accelerator
from intel_extension_for_deepspeed import XPU_Accelerator
# First use CPU as accelerator
# Convert to deepspeed model and apply IPEX-LLM optimization on CPU to decrease GPU memory usage
current_accel = CPU_Accelerator()
set_accelerator(current_accel)
global model, tokenizer
model = AutoModelForCausalLM.from_pretrained(model_path,
device_map={"": "cpu"},
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
trust_remote_code=True,
use_cache=True)
model = deepspeed.init_inference(
model,
tensor_parallel={"tp_size": world_size},
dtype=torch.bfloat16,
replace_method="auto",
)
# Use IPEX-LLM `optimize_model` to convert the model into optimized low bit format
# Convert the rest of the model into float16 to reduce allreduce traffic
model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit).to(torch.float16)
# Next, use XPU as accelerator to speed up inference
current_accel = XPU_Accelerator()
set_accelerator(current_accel)
# Move model back to xpu
model = model.to(f'xpu:{local_rank}')
model = BenchmarkWrapper(model)
# Modify backend related settings
if world_size > 1:
get_accelerator().set_device(local_rank)
dist_backend = get_accelerator().communication_backend_name()
import deepspeed.comm.comm
deepspeed.comm.comm.cdb = None
from deepspeed.comm.comm import init_distributed
init_distributed()
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
def generate_text(prompt: List[str], n_predict = 32):
while prompt[-1] == "":
prompt = prompt[:-1]
if isinstance(n_predict, list):
n_predict = max(n_predict)
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
input_ids = inputs.input_ids.to(f'xpu:{local_rank}')
# print(input_ids)
attention_mask = inputs.attention_mask.to(f'xpu:{local_rank}')
output = model.generate(input_ids,
attention_mask=attention_mask,
max_new_tokens=n_predict,
use_cache=True)
torch.xpu.synchronize()
return output
class PromptRequest(BaseModel):
prompt: str
n_predict: int = 32
empty_req = PromptRequest(prompt="", n_predict=0)
app = FastAPI()
from collections import deque
rest_req_deque = deque(maxlen=128)
request_queue: asyncio.Queue = asyncio.Queue()
result_dict: Dict[str, str] = {}
@app.post("/generate/")
async def generate(prompt_request: PromptRequest):
request_id = str(uuid.uuid4())
await request_queue.put((request_id, prompt_request))
while True:
await asyncio.sleep(0.1)
if request_id in result_dict:
output_str = result_dict.pop(request_id)
return {"generated_text": output_str}
async def process_requests():
while True:
request_ids, prompt_requests = [], []
cur_batched_tokens = 0
if local_rank == 0:
while rest_req_deque:
request_id, rest_request = rest_req_deque.popleft()
prompt = rest_request.prompt
cur_prompt_len = tokenizer(prompt_request.prompt, return_tensors="pt").input_ids.size(1)
cur_batched_tokens += cur_prompt_len
if cur_batched_tokens > max_num_batched_tokens:
cur_batched_tokens -= cur_prompt_len
rest_req_deque.appendleft((request_id, rest_request))
break
request_ids.append(request_id)
prompt_requests.append(rest_request)
if len(prompt_requests) == max_num_seqs:
break
for _ in range(max_num_seqs - len(prompt_requests)):
if request_queue.empty():
break
request_id, prompt_request = await request_queue.get()
# import pdb
# pdb.set_trace()
cur_prompt_len = tokenizer(prompt_request.prompt, return_tensors="pt").input_ids.size(1)
cur_batched_tokens += cur_prompt_len
if cur_batched_tokens > max_num_batched_tokens:
cur_batched_tokens -= cur_prompt_len
rest_req_deque.appendleft((request_id, prompt_request))
break
request_ids.append(request_id)
prompt_requests.append(prompt_request)
if local_rank == 0 and prompt_requests:
object_list = prompt_requests
if len(object_list) < max_num_seqs:
object_list = object_list + [empty_req] * (max_num_seqs - len(object_list))
logger.info(f"Running: {len(prompt_requests)}, Pending: {request_queue.qsize()}")
dist.broadcast_object_list(object_list, src=0)
start_time = time.time()
outputs = generate_text([req.prompt for req in object_list], [req.n_predict for req in object_list])
generate_time = time.time() - start_time
outputs = outputs.cpu()
output_strs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
output_strs = output_strs[:len(prompt_requests)]
for request_id, output_str in zip(request_ids, output_strs):
result_dict[request_id] = output_str
logger.info(f"First token latency: {model.first_cost}, next token latency: {model.rest_cost_mean}, generate time: {generate_time}")
await asyncio.sleep(0.1)
@app.on_event("startup")
async def startup_event():
if local_rank == 0:
asyncio.create_task(process_requests())
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging DeepSpeed-AutoTP')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--low-bit', type=str, default='sym_int4',
help='The quantization type the model will convert to.')
parser.add_argument('--port', type=int, default=8000,
help='The port number on which the server will run.')
parser.add_argument('--max-num-batched-tokens', type=int, default=4096,
help='Max tokens can be batched by this service.')
parser.add_argument('--max-num-seqs', type=int, default=8,
help='Max requests can be batched by this service.')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
low_bit = args.low_bit
max_num_seqs = args.max_num_seqs
max_num_batched_tokens = args.max_num_batched_tokens
load_model(model_path, low_bit)
if local_rank == 0:
uvicorn.run(app, host="0.0.0.0", port=args.port)
else:
while True:
object_list = [None] * max_num_seqs
dist.broadcast_object_list(object_list, src=0)
output = generate_text([req.prompt for req in object_list], [req.n_predict for req in object_list])