* LLM: optimize llama natvie sdp for split qkv tensor. * fix block real size. * fix comment. * fix style. * refactor.
		
			
				
	
	
		
			1981 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1981 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
# Some parts of this file is adapted from
 | 
						|
# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/llama/modeling_llama.py
 | 
						|
# which is licensed under Apache License 2.0:
 | 
						|
#
 | 
						|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
import torch
 | 
						|
import warnings
 | 
						|
import importlib
 | 
						|
import torch.nn as nn
 | 
						|
from typing import Optional, Tuple, Union, List
 | 
						|
import math
 | 
						|
import os
 | 
						|
import torch.nn.functional as F
 | 
						|
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
						|
from ipex_llm.transformers.models.utils import SILU
 | 
						|
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
 | 
						|
    restore_fp8_kv_cache, use_quantize_kv_cache
 | 
						|
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
 | 
						|
    apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
 | 
						|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
 | 
						|
from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
 | 
						|
from ipex_llm.transformers.models.utils import mlp_fusion_check, fp16_fusion_check
 | 
						|
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
						|
from transformers.models.llama.modeling_llama import LlamaModel
 | 
						|
from ipex_llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS, FP4
 | 
						|
from ipex_llm.ggml.quantize import ggml_tensor_qtype
 | 
						|
from ipex_llm.utils.common import invalidInputError
 | 
						|
 | 
						|
try:
 | 
						|
    from transformers.cache_utils import Cache, DynamicCache
 | 
						|
except ImportError:
 | 
						|
    Cache = Tuple[torch.Tensor]
 | 
						|
from transformers import logging
 | 
						|
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
 | 
						|
def llama_decoding_fast_path_qtype_check(proj):
 | 
						|
    # IQ2_XXS only can be used in Llama-like model
 | 
						|
    qtype = getattr(proj, "qtype", None)
 | 
						|
    return qtype in [SYM_INT4, FP8E5, IQ2_XXS, FP4]
 | 
						|
 | 
						|
 | 
						|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
 | 
						|
    """
 | 
						|
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states
 | 
						|
    go from (batch, num_key_value_heads, seqlen, head_dim) to
 | 
						|
    (batch, num_attention_heads, seqlen, head_dim)
 | 
						|
    """
 | 
						|
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
 | 
						|
    if n_rep == 1:
 | 
						|
        return hidden_states
 | 
						|
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
 | 
						|
                                                           n_rep, slen, head_dim)
 | 
						|
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
 | 
						|
 | 
						|
KV_CACHE_ALLOC_BLOCK_LENGTH = os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)
 | 
						|
 | 
						|
 | 
						|
_ipex_version = None
 | 
						|
 | 
						|
 | 
						|
def get_ipex_version():
 | 
						|
 | 
						|
    global _ipex_version
 | 
						|
    if _ipex_version is not None:
 | 
						|
        return _ipex_version
 | 
						|
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    _ipex_version = ipex.__version__
 | 
						|
    return _ipex_version
 | 
						|
 | 
						|
 | 
						|
def llama_model_forward_4_36(
 | 
						|
    self,
 | 
						|
    input_ids: torch.LongTensor = None,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
						|
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
    use_cache: Optional[bool] = None,
 | 
						|
    output_attentions: Optional[bool] = None,
 | 
						|
    output_hidden_states: Optional[bool] = None,
 | 
						|
    return_dict: Optional[bool] = None,
 | 
						|
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
						|
    from ipex_llm.transformers.kv import DynamicFp8Cache
 | 
						|
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
						|
    if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids):
 | 
						|
        if not isinstance(past_key_values, DynamicFp8Cache):
 | 
						|
            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
						|
    return llama_model_forward_4_36_internal(
 | 
						|
        self=self,
 | 
						|
        input_ids=input_ids,
 | 
						|
        attention_mask=attention_mask,
 | 
						|
        position_ids=position_ids,
 | 
						|
        past_key_values=past_key_values,
 | 
						|
        inputs_embeds=inputs_embeds,
 | 
						|
        use_cache=use_cache,
 | 
						|
        output_attentions=output_attentions,
 | 
						|
        output_hidden_states=output_hidden_states,
 | 
						|
        return_dict=return_dict,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def llama_rms_norm_forward(self, hidden_states):
 | 
						|
    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
						|
        import linear_q4_0
 | 
						|
        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
						|
        output = linear_q4_0.rms_norm(self.weight, x_2d, self.variance_epsilon)
 | 
						|
        if 1 < x_2d.size(0) <= 64:   # may use XMX, need copy
 | 
						|
            output = output.clone()
 | 
						|
        return output.reshape(hidden_states.shape)
 | 
						|
 | 
						|
    input_dtype = hidden_states.dtype
 | 
						|
    hidden_states = hidden_states.to(torch.float32)
 | 
						|
    variance = hidden_states.pow(2).mean(-1, keepdim=True)
 | 
						|
    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
 | 
						|
    return self.weight * hidden_states.to(input_dtype)
 | 
						|
 | 
						|
 | 
						|
def llama_mlp_forward(
 | 
						|
    self,
 | 
						|
    x: torch.Tensor,
 | 
						|
    residual=None
 | 
						|
) -> torch.Tensor:
 | 
						|
    x_2d = x.view(-1, x.shape[-1])
 | 
						|
    bsz, hidden_size = x_2d.shape
 | 
						|
    qtype = getattr(self.gate_proj, "qtype", None)
 | 
						|
    if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
 | 
						|
        import linear_q4_0
 | 
						|
        if not x_2d.is_contiguous():
 | 
						|
            x_2d = x_2d.contiguous()
 | 
						|
        out = self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
						|
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
						|
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
						|
            SILU, qtype
 | 
						|
        ))
 | 
						|
        if residual is not None:
 | 
						|
            return out + residual
 | 
						|
        else:
 | 
						|
            return out
 | 
						|
    elif fp16_fusion_check(self.gate_proj, x, self.training) and \
 | 
						|
            hidden_size == 4096 and bsz == 1:
 | 
						|
        hidden_states1 = torch.ops.torch_ipex.mm_silu(x, self.gate_proj.weight)
 | 
						|
        hidden_states = torch.ops.torch_ipex.mm_resmul(
 | 
						|
            x, self.up_proj.weight, hidden_states1
 | 
						|
        )
 | 
						|
        if residual is None:
 | 
						|
            hidden_states = torch.matmul(hidden_states, self.down_proj.weight)
 | 
						|
        else:
 | 
						|
            attn_output = torch.addmm(
 | 
						|
                residual.flatten(0, -2),
 | 
						|
                hidden_states.flatten(0, -2),
 | 
						|
                self.down_proj.weight,
 | 
						|
                beta=1,
 | 
						|
            )
 | 
						|
            hidden_states = attn_output.view(x.shape)
 | 
						|
        return hidden_states
 | 
						|
    else:
 | 
						|
        a = self.act_fn(self.gate_proj(x))
 | 
						|
        b = self.up_proj(x)
 | 
						|
        c = a * b
 | 
						|
        del a, b
 | 
						|
        out = self.down_proj(c)
 | 
						|
        if residual is not None:
 | 
						|
            return out + residual
 | 
						|
        else:
 | 
						|
            return out
 | 
						|
 | 
						|
 | 
						|
def should_use_fuse_rope(self, query_states, position_ids):
 | 
						|
    use_fuse_rope = query_states.device.type == "xpu"
 | 
						|
    use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
 | 
						|
    use_fuse_rope = use_fuse_rope and self.config.rope_scaling is None
 | 
						|
    use_fuse_rope = use_fuse_rope and position_ids is not None
 | 
						|
    return use_fuse_rope
 | 
						|
 | 
						|
 | 
						|
# Only for xpu and training
 | 
						|
def should_use_fast_rope(self, query_states, position_ids):
 | 
						|
    use_fuse_rope = query_states.device.type == "xpu"
 | 
						|
    use_fuse_rope = use_fuse_rope and (self.training or query_states.requires_grad)
 | 
						|
    use_fuse_rope = use_fuse_rope and self.config.rope_scaling is None
 | 
						|
    use_fuse_rope = use_fuse_rope and position_ids is not None
 | 
						|
    return use_fuse_rope
 | 
						|
 | 
						|
 | 
						|
def should_split_qkv_tensor(query_states, output_attentions):
 | 
						|
    if not output_attentions and query_states.dtype == torch.float16 and \
 | 
						|
            query_states.shape[2] >= 6800:
 | 
						|
        # split tensor for memory block limitation
 | 
						|
        # support fp16 and set input length threshold at 6800 for now
 | 
						|
        return True
 | 
						|
    return False
 | 
						|
 | 
						|
 | 
						|
def llama_decoder_forward(
 | 
						|
    self,
 | 
						|
    hidden_states: torch.Tensor,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
						|
    output_attentions: Optional[bool] = False,
 | 
						|
    use_cache: Optional[bool] = False,
 | 
						|
    **kwargs,
 | 
						|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
 | 
						|
    if "padding_mask" in kwargs:
 | 
						|
            warnings.warn(
 | 
						|
                "Passing `padding_mask` is deprecated and will be removed in v4.37."
 | 
						|
                "Please make sure use `attention_mask` instead.`"
 | 
						|
            )
 | 
						|
 | 
						|
    residual = hidden_states
 | 
						|
 | 
						|
    hidden_states = self.input_layernorm(hidden_states)
 | 
						|
 | 
						|
    # Self Attention
 | 
						|
    hidden_states, self_attn_weights, present_key_value = self.self_attn(
 | 
						|
        hidden_states=hidden_states,
 | 
						|
        attention_mask=attention_mask,
 | 
						|
        position_ids=position_ids,
 | 
						|
        past_key_value=past_key_value,
 | 
						|
        output_attentions=output_attentions,
 | 
						|
        use_cache=use_cache,
 | 
						|
        **kwargs,
 | 
						|
    )
 | 
						|
    hidden_states = residual + hidden_states
 | 
						|
 | 
						|
    # Fully Connected
 | 
						|
    residual = hidden_states
 | 
						|
    hidden_states = self.post_attention_layernorm(hidden_states)
 | 
						|
 | 
						|
    # add residual into mlp
 | 
						|
    hidden_states = self.mlp(hidden_states, residual)
 | 
						|
 | 
						|
    outputs = (hidden_states,)
 | 
						|
 | 
						|
    if output_attentions:
 | 
						|
        outputs += (self_attn_weights,)
 | 
						|
 | 
						|
    if use_cache:
 | 
						|
        outputs += (present_key_value,)
 | 
						|
 | 
						|
    return outputs
 | 
						|
 | 
						|
 | 
						|
def fuse_qkv_weight(q_proj, k_proj, v_proj):
 | 
						|
    weight_size = q_proj.out_len * q_proj.in_len // 2
 | 
						|
    zeros_size = q_proj.in_len * q_proj.out_len // 2 // 64
 | 
						|
    zeros_end = weight_size + zeros_size
 | 
						|
    weight_byte_shape = (q_proj.in_len//2, q_proj.out_len)
 | 
						|
    zeros_byte_shape = (q_proj.in_len//64, q_proj.out_len//2)
 | 
						|
    scales_byte_shape = (q_proj.in_len//64, q_proj.out_len*2)
 | 
						|
    qweight = torch.concat([q_proj.weight.data[:weight_size].reshape(weight_byte_shape),
 | 
						|
                            k_proj.weight.data[:weight_size].reshape(weight_byte_shape),
 | 
						|
                            v_proj.weight.data[:weight_size].reshape(weight_byte_shape),
 | 
						|
                            ], dim=-1).reshape(-1)
 | 
						|
    qzeros = torch.concat([q_proj.weight.data[weight_size:zeros_end].reshape(zeros_byte_shape),
 | 
						|
                           k_proj.weight.data[weight_size:zeros_end].reshape(zeros_byte_shape),
 | 
						|
                           v_proj.weight.data[weight_size:zeros_end].reshape(zeros_byte_shape),
 | 
						|
                           ], dim=-1).reshape(-1)
 | 
						|
    qscales = torch.concat([q_proj.weight.data[zeros_end:].reshape(scales_byte_shape),
 | 
						|
                            k_proj.weight.data[zeros_end:].reshape(scales_byte_shape),
 | 
						|
                            v_proj.weight.data[zeros_end:].reshape(scales_byte_shape),
 | 
						|
                            ], dim=-1).reshape(-1)
 | 
						|
    q_proj.weight.data = torch.empty(0)
 | 
						|
    k_proj.weight.data = torch.empty(0)
 | 
						|
    v_proj.weight.data = torch.empty(0)
 | 
						|
    return torch.cat([qweight, qzeros, qscales], dim=0)
 | 
						|
 | 
						|
 | 
						|
def should_use_mm_int4_qkv(self, device):
 | 
						|
    return device.type == "xpu" and self.q_proj.qtype == SYM_INT4 and self.q_proj.enable_xetla
 | 
						|
 | 
						|
 | 
						|
def llama_attention_forward_4_31(
 | 
						|
    self,
 | 
						|
    hidden_states: torch.Tensor,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
						|
    output_attentions: bool = False,
 | 
						|
    use_cache: bool = False,
 | 
						|
    padding_mask: Optional[torch.LongTensor] = None,
 | 
						|
    **kwargs,
 | 
						|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
						|
    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
						|
        forward_function = llama_attention_forward_4_31_quantized
 | 
						|
    else:
 | 
						|
        forward_function = llama_attention_forward_4_31_original
 | 
						|
    return forward_function(
 | 
						|
        self=self,
 | 
						|
        hidden_states=hidden_states,
 | 
						|
        attention_mask=attention_mask,
 | 
						|
        position_ids=position_ids,
 | 
						|
        past_key_value=past_key_value,
 | 
						|
        output_attentions=output_attentions,
 | 
						|
        use_cache=use_cache,
 | 
						|
        padding_mask=padding_mask,
 | 
						|
        kwargs=kwargs
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def llama_attention_forward_4_31_quantized(
 | 
						|
    self,
 | 
						|
    hidden_states: torch.Tensor,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
						|
    output_attentions: bool = False,
 | 
						|
    use_cache: bool = False,
 | 
						|
    padding_mask: Optional[torch.LongTensor] = None,
 | 
						|
    **kwargs,
 | 
						|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
						|
    bsz, q_len, hidden_size = hidden_states.size()
 | 
						|
    device = hidden_states.device
 | 
						|
    # for flash attention
 | 
						|
    original_dtype = hidden_states.dtype
 | 
						|
 | 
						|
    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
						|
    enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=q_len)
 | 
						|
    qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
 | 
						|
    no_tp = not self.config.pretraining_tp > 1
 | 
						|
    decoding_fast_path = (no_tp and qtype_check and use_fuse_rope
 | 
						|
                          and enough_kv_room and bsz * q_len == 1)
 | 
						|
 | 
						|
    # single batch decoding fast path
 | 
						|
    # forward_qkv takes will perform QKV projection, rotary position embedding
 | 
						|
    # and save the key/value states to cache, then return query states and the
 | 
						|
    # extended key/value cache
 | 
						|
    if decoding_fast_path:
 | 
						|
        hidden_states = hidden_states.view(1, -1)
 | 
						|
        tmp_cache_k, tmp_cache_v = init_kv_cache(
 | 
						|
            bsz,
 | 
						|
            self.num_key_value_heads,
 | 
						|
            self.head_dim,
 | 
						|
            0,
 | 
						|
            1,
 | 
						|
            dtype=hidden_states.dtype,
 | 
						|
            device=device
 | 
						|
        )
 | 
						|
        import linear_q4_0
 | 
						|
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
						|
                                                                         self.q_proj.weight,
 | 
						|
                                                                         self.k_proj.weight,
 | 
						|
                                                                         self.v_proj.weight,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         tmp_cache_k, tmp_cache_v,
 | 
						|
                                                                         self.q_proj.weight.qtype,
 | 
						|
                                                                         self.v_proj.weight.qtype,
 | 
						|
                                                                         0,
 | 
						|
                                                                         self.head_dim,
 | 
						|
                                                                         self.rotary_emb.base,)
 | 
						|
    else:
 | 
						|
        query_states = self.q_proj(hidden_states)
 | 
						|
        key_states = self.k_proj(hidden_states)
 | 
						|
        value_states = self.v_proj(hidden_states)
 | 
						|
 | 
						|
        query_states = query_states.view(bsz, q_len,
 | 
						|
                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
						|
        key_states = key_states.view(bsz, q_len,
 | 
						|
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
        value_states = value_states.view(bsz, q_len,
 | 
						|
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
 | 
						|
        kv_seq_len = key_states.shape[-2]
 | 
						|
        if past_key_value is not None:
 | 
						|
            kv_seq_len += past_key_value[0].shape[-2]
 | 
						|
 | 
						|
        if use_fuse_rope:
 | 
						|
            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
						|
                                                                         key_states,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         "llama")
 | 
						|
        else:
 | 
						|
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
						|
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
						|
                                                            cos, sin, position_ids, "llama")
 | 
						|
 | 
						|
    if past_key_value is None:
 | 
						|
        kv_seq_len = key_states.shape[-2]
 | 
						|
        repeated_key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
						|
        repeated_value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
						|
        attn_output, attn_weights = native_sdp(query_states, repeated_key_states,
 | 
						|
                                               repeated_value_states, attention_mask,
 | 
						|
                                               bsz, q_len, kv_seq_len,
 | 
						|
                                               self.head_dim, self.num_heads, output_attentions)
 | 
						|
        if use_cache:
 | 
						|
            k_cache, v_cache = init_fp8_kv_cache(
 | 
						|
                bsz, self.num_key_value_heads, kv_seq_len, self.head_dim,
 | 
						|
                device=query_states.device, new_layout=True
 | 
						|
            )
 | 
						|
            key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
 | 
						|
                                                           key_states, value_states)
 | 
						|
            past_key_value = (key_states, value_states)
 | 
						|
    else:
 | 
						|
        k_cache, v_cache = past_key_value
 | 
						|
        key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
 | 
						|
                                                       key_states, value_states, new_layout=True)
 | 
						|
        kv_seq_len = key_states.shape[-2]
 | 
						|
        past_key_value = (key_states, value_states)
 | 
						|
 | 
						|
        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
						|
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
						|
                                                            query_states.dtype)
 | 
						|
            # repeat k/v heads if n_kv_heads < n_heads
 | 
						|
            key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
						|
            value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
						|
            attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
 | 
						|
                                                   attention_mask,
 | 
						|
                                                   bsz, q_len, kv_seq_len,
 | 
						|
                                                   self.head_dim, self.num_heads, output_attentions)
 | 
						|
        else:
 | 
						|
            import linear_q4_0
 | 
						|
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
						|
                                              attention_mask)
 | 
						|
            attn_weights = None
 | 
						|
 | 
						|
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
						|
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
						|
 | 
						|
    if self.config.pretraining_tp > 1:
 | 
						|
        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
 | 
						|
        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
 | 
						|
                                                 dim=1)
 | 
						|
        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
 | 
						|
                           for i in range(self.config.pretraining_tp)])
 | 
						|
    else:
 | 
						|
        attn_output = self.o_proj(attn_output)
 | 
						|
 | 
						|
    if not output_attentions:
 | 
						|
        attn_weights = None
 | 
						|
 | 
						|
    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
						|
 | 
						|
 | 
						|
def llama_attention_forward_4_31_original(
 | 
						|
    self,
 | 
						|
    hidden_states: torch.Tensor,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
						|
    output_attentions: bool = False,
 | 
						|
    use_cache: bool = False,
 | 
						|
    padding_mask: Optional[torch.LongTensor] = None,
 | 
						|
    **kwargs,
 | 
						|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
						|
    bsz, q_len, hidden_size = hidden_states.size()
 | 
						|
    device = hidden_states.device
 | 
						|
    # for flash attention
 | 
						|
    original_dtype = hidden_states.dtype
 | 
						|
 | 
						|
    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
						|
    enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=q_len)
 | 
						|
    qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
 | 
						|
    no_tp = not self.config.pretraining_tp > 1
 | 
						|
    decoding_fast_path = (no_tp and qtype_check and use_fuse_rope and
 | 
						|
                          enough_kv_room and bsz * q_len == 1)
 | 
						|
    decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
 | 
						|
 | 
						|
    # single batch decoding fast path
 | 
						|
    # forward_qkv takes will perform QKV projection, rotary position embedding
 | 
						|
    # and save the key/value states to cache, then return query states and the
 | 
						|
    # extended key/value cache
 | 
						|
    if decoding_fast_path:
 | 
						|
        hidden_states = hidden_states.view(1, -1)
 | 
						|
        kv_seq_len = past_key_value[0].shape[-2]
 | 
						|
        cache_k = past_key_value[0]
 | 
						|
        cache_v = past_key_value[1]
 | 
						|
        import linear_q4_0
 | 
						|
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
						|
                                                                         self.q_proj.weight,
 | 
						|
                                                                         self.k_proj.weight,
 | 
						|
                                                                         self.v_proj.weight,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         cache_k, cache_v,
 | 
						|
                                                                         self.q_proj.weight.qtype,
 | 
						|
                                                                         self.v_proj.weight.qtype,
 | 
						|
                                                                         kv_seq_len,
 | 
						|
                                                                         self.head_dim,
 | 
						|
                                                                         self.rotary_emb.base,)
 | 
						|
        kv_seq_len += 1
 | 
						|
 | 
						|
    else:
 | 
						|
        if self.config.pretraining_tp > 1:
 | 
						|
            key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
 | 
						|
                                 self.config.pretraining_tp)
 | 
						|
            query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
 | 
						|
                                                    // self.config.pretraining_tp, dim=0)
 | 
						|
            key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
 | 
						|
            value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
 | 
						|
 | 
						|
            query_states = [F.linear(hidden_states, query_slices[i])
 | 
						|
                            for i in range(self.config.pretraining_tp)]
 | 
						|
            query_states = torch.cat(query_states, dim=-1)
 | 
						|
 | 
						|
            key_states = [F.linear(hidden_states, key_slices[i])
 | 
						|
                          for i in range(self.config.pretraining_tp)]
 | 
						|
            key_states = torch.cat(key_states, dim=-1)
 | 
						|
 | 
						|
            value_states = [F.linear(hidden_states, value_slices[i])
 | 
						|
                            for i in range(self.config.pretraining_tp)]
 | 
						|
            value_states = torch.cat(value_states, dim=-1)
 | 
						|
        else:
 | 
						|
            if fp16_fusion_check(self.q_proj, hidden_states, self.training) and \
 | 
						|
                    hidden_size == 4096:
 | 
						|
                # only use mm_qkv_out on pvc for llama-7b
 | 
						|
                if not hasattr(self, "qkv_proj_weight"):
 | 
						|
                    self.qkv_proj_weight = torch.stack([self.q_proj.weight,
 | 
						|
                                                        self.k_proj.weight,
 | 
						|
                                                        self.v_proj.weight]).contiguous()
 | 
						|
                    self.q_proj.weight.data = self.qkv_proj_weight[0, :, :]
 | 
						|
                    self.k_proj.weight.data = self.qkv_proj_weight[1, :, :]
 | 
						|
                    self.v_proj.weight.data = self.qkv_proj_weight[2, :, :]
 | 
						|
                    torch.xpu.empty_cache()
 | 
						|
                query_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
 | 
						|
                                           dtype=hidden_states.dtype, device=hidden_states.device)
 | 
						|
                key_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
 | 
						|
                                         dtype=hidden_states.dtype, device=hidden_states.device)
 | 
						|
                value_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
 | 
						|
                                           dtype=hidden_states.dtype, device=hidden_states.device)
 | 
						|
                torch.ops.torch_ipex.mm_qkv_out(
 | 
						|
                    hidden_states, self.qkv_proj_weight, None,
 | 
						|
                    query_states, key_states, value_states
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                if should_use_mm_int4_qkv(self, device):
 | 
						|
                    if not hasattr(self, "qkv_proj_qweight"):
 | 
						|
                        self.qkv_proj_qweight = fuse_qkv_weight(self.q_proj,
 | 
						|
                                                                self.k_proj,
 | 
						|
                                                                self.v_proj)
 | 
						|
                    import linear_q4_0
 | 
						|
                    qkv_states = linear_q4_0.mm_int4(hidden_states, self.qkv_proj_qweight)
 | 
						|
                    query_states = qkv_states[:, :, :hidden_size]
 | 
						|
                    key_states = qkv_states[:, :, hidden_size:2*hidden_size]
 | 
						|
                    value_states = qkv_states[:, :, 2*hidden_size:]
 | 
						|
                else:
 | 
						|
                    query_states = self.q_proj(hidden_states)
 | 
						|
                    key_states = self.k_proj(hidden_states)
 | 
						|
                    value_states = self.v_proj(hidden_states)
 | 
						|
 | 
						|
        query_states = query_states.view(bsz, q_len,
 | 
						|
                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
						|
        key_states = key_states.view(bsz, q_len,
 | 
						|
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
        value_states = value_states.view(bsz, q_len,
 | 
						|
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
 | 
						|
        kv_seq_len = key_states.shape[-2]
 | 
						|
        if past_key_value is not None:
 | 
						|
            kv_seq_len += past_key_value[0].shape[-2]
 | 
						|
 | 
						|
        if use_fuse_rope:
 | 
						|
            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
						|
                                                                         key_states,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         "llama")
 | 
						|
        else:
 | 
						|
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
						|
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
						|
                                                            cos, sin, position_ids, "llama")
 | 
						|
 | 
						|
        if past_key_value is not None:
 | 
						|
            # reuse k, v, self_attention
 | 
						|
            cache_k = past_key_value[0]
 | 
						|
            cache_v = past_key_value[1]
 | 
						|
            if not enough_kv_room:
 | 
						|
                # allocate new
 | 
						|
                new_cache_k, new_cache_v = extend_kv_cache(
 | 
						|
                    bsz,
 | 
						|
                    self.num_key_value_heads,  # Support GQA
 | 
						|
                    self.head_dim,
 | 
						|
                    cache_k.size(2),
 | 
						|
                    kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
						|
                    dtype=cache_k.dtype,
 | 
						|
                    device=device
 | 
						|
                )
 | 
						|
                new_cache_k[:] = cache_k
 | 
						|
                new_cache_v[:] = cache_v
 | 
						|
                cache_k = new_cache_k
 | 
						|
                cache_v = new_cache_v
 | 
						|
 | 
						|
            key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
 | 
						|
 | 
						|
        elif use_cache:
 | 
						|
            max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
						|
            new_key_states, new_value_states = init_kv_cache(bsz,
 | 
						|
                                                             self.num_key_value_heads,
 | 
						|
                                                             self.head_dim,
 | 
						|
                                                             kv_seq_len,
 | 
						|
                                                             max_cache_length,
 | 
						|
                                                             dtype=key_states.dtype,
 | 
						|
                                                             device=device)
 | 
						|
            new_key_states[:] = key_states
 | 
						|
            new_value_states[:] = value_states
 | 
						|
            key_states = new_key_states
 | 
						|
            value_states = new_value_states
 | 
						|
 | 
						|
    past_key_value = (key_states, value_states) if use_cache else None
 | 
						|
 | 
						|
    # repeat k/v heads if n_kv_heads < n_heads
 | 
						|
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
						|
    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
						|
 | 
						|
    if not self.training and not hidden_states.requires_grad and \
 | 
						|
            use_flash_attention(query_states, key_states, attention_mask):
 | 
						|
        attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
 | 
						|
                                                     key_states.to(device, dtype=torch.float16),
 | 
						|
                                                     value_states.to(device, dtype=torch.float16),
 | 
						|
                                                     is_causal=True)
 | 
						|
        attn_weights = None
 | 
						|
    elif not self.training and not hidden_states.requires_grad and \
 | 
						|
            use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states, attention_mask):
 | 
						|
        import linear_fp16_esimd
 | 
						|
        attn_output = linear_fp16_esimd.sdp_forward(query_states,
 | 
						|
                                                    key_states,
 | 
						|
                                                    value_states)
 | 
						|
        attn_output = attn_output.view(query_states.shape)
 | 
						|
        attn_weights = None
 | 
						|
    else:
 | 
						|
        # otherwise, use native attention
 | 
						|
        attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
 | 
						|
                                               attention_mask,
 | 
						|
                                               bsz, q_len, kv_seq_len,
 | 
						|
                                               self.head_dim, self.num_heads, output_attentions)
 | 
						|
    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
						|
    if attn_output.size() != attn_output_size:
 | 
						|
        invalidInputError(False,
 | 
						|
                          f"`attn_output` should be of size {attn_output_size},"
 | 
						|
                          f" but is {attn_output.size()}")
 | 
						|
 | 
						|
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
						|
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
						|
 | 
						|
    if self.config.pretraining_tp > 1:
 | 
						|
        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
 | 
						|
        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
 | 
						|
                                                 dim=1)
 | 
						|
        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
 | 
						|
                           for i in range(self.config.pretraining_tp)])
 | 
						|
    else:
 | 
						|
        attn_output = self.o_proj(attn_output)
 | 
						|
 | 
						|
    if not output_attentions:
 | 
						|
        attn_weights = None
 | 
						|
 | 
						|
    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
						|
 | 
						|
 | 
						|
def llama_attention_selective_batching_forward_4_31(
 | 
						|
    self,
 | 
						|
    hidden_states: torch.Tensor,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
						|
    output_attentions: bool = False,
 | 
						|
    use_cache: bool = False,
 | 
						|
    padding_mask: Optional[torch.LongTensor] = None,
 | 
						|
    **kwargs,
 | 
						|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
						|
    # Minimize this value to reduce memory allocation.
 | 
						|
    VLLM_KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get('VLLM_KV_CACHE_ALLOC_BLOCK', 64))
 | 
						|
    bsz, q_len, _ = hidden_states.size()
 | 
						|
    device = hidden_states.device
 | 
						|
    # for flash attention
 | 
						|
    original_dtype = hidden_states.dtype
 | 
						|
    # TODO: consider this later - flash attention
 | 
						|
    # if not self.training and not hidden_states.requires_grad:
 | 
						|
    #     fsdp_flag = use_flash_attention(hidden_states)
 | 
						|
    # else:
 | 
						|
    #     fsdp_flag = False
 | 
						|
    # if fsdp_flag and q_len > 1:
 | 
						|
    #     attention_dtype = torch.float16  # use fp16 for flash attention
 | 
						|
    # else:
 | 
						|
    #     attention_dtype = original_dtype
 | 
						|
 | 
						|
    attention_dtype = original_dtype
 | 
						|
 | 
						|
    # TODO: decoding fast path
 | 
						|
    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
						|
    enough_kv_room = past_key_value is not None and is_enough_kv_cache_room_4_31(past_key_value[0])
 | 
						|
    qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
 | 
						|
    no_tp = not self.config.pretraining_tp > 1
 | 
						|
    decoding_fast_path = (no_tp and qtype_check and use_fuse_rope and
 | 
						|
                          bsz * q_len == 1)
 | 
						|
    decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
 | 
						|
 | 
						|
    updated_past_key_values = []
 | 
						|
    # single batch decoding fast path
 | 
						|
    # forward_qkv takes will perform QKV projection, rotary position embedding
 | 
						|
    # and save the key/value states to cache, then return query states and the
 | 
						|
    # extended key/value cache
 | 
						|
    if decoding_fast_path:
 | 
						|
        past_k = past_key_value[0][0]
 | 
						|
        past_v = past_key_value[0][1]
 | 
						|
        kv_seq_len = past_k.shape[-2]
 | 
						|
        if not enough_kv_room:
 | 
						|
            new_cache_k, new_cache_v = extend_kv_cache(1,
 | 
						|
                                                       self.num_key_value_heads,  # Support GQA
 | 
						|
                                                       self.head_dim,
 | 
						|
                                                       kv_seq_len,
 | 
						|
                                                       kv_seq_len +
 | 
						|
                                                       VLLM_KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
						|
                                                       dtype=past_k.dtype,
 | 
						|
                                                       device=device)
 | 
						|
            new_cache_k[:] = past_k
 | 
						|
            new_cache_v[:] = past_v
 | 
						|
            past_k = new_cache_k
 | 
						|
            past_v = new_cache_v
 | 
						|
        hidden_states = hidden_states.view(1, -1)
 | 
						|
        import linear_q4_0
 | 
						|
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
						|
                                                                         self.q_proj.weight,
 | 
						|
                                                                         self.k_proj.weight,
 | 
						|
                                                                         self.v_proj.weight,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         past_k, past_v,
 | 
						|
                                                                         self.q_proj.weight.qtype,
 | 
						|
                                                                         self.v_proj.weight.qtype,
 | 
						|
                                                                         kv_seq_len,
 | 
						|
                                                                         self.head_dim,
 | 
						|
                                                                         self.rotary_emb.base,
 | 
						|
                                                                         )
 | 
						|
        kv_seq_len += 1
 | 
						|
    else:
 | 
						|
        if self.config.pretraining_tp > 1:
 | 
						|
            invalidInputError(False, f"vLLM: config.pretraining_tp > 1 not supported yet")
 | 
						|
        else:
 | 
						|
            query_states = self.q_proj(hidden_states)
 | 
						|
            key_states = self.k_proj(hidden_states)
 | 
						|
            value_states = self.v_proj(hidden_states)
 | 
						|
 | 
						|
        query_states = query_states.view(bsz, q_len,
 | 
						|
                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
						|
        key_states = key_states.view(bsz, q_len,
 | 
						|
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
        value_states = value_states.view(bsz, q_len,
 | 
						|
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
 | 
						|
        kv_seq_len = key_states.shape[-2]
 | 
						|
        if past_key_value is not None:
 | 
						|
            kv_seq_len += max(kv_pair[0].shape[-2] for kv_pair in past_key_value)
 | 
						|
 | 
						|
        if use_fuse_rope:
 | 
						|
            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
						|
                                                                         key_states,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         "llama")
 | 
						|
        else:
 | 
						|
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
						|
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
						|
                                                            cos, sin, position_ids, "llama")
 | 
						|
 | 
						|
        if past_key_value is not None:
 | 
						|
            batched_attention_output = []
 | 
						|
            # print(f"type of attention_mask is {type(attention_mask)}")
 | 
						|
            for batch in range(bsz):
 | 
						|
                enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value[batch])
 | 
						|
                past_k, past_v = past_key_value[batch]
 | 
						|
                current_kv_len = past_k.shape[-2] + 1
 | 
						|
                if not enough_kv_room:
 | 
						|
                    # allocate new
 | 
						|
                    new_cache_k, new_cache_v = extend_kv_cache(1,
 | 
						|
                                                               self.num_key_value_heads,
 | 
						|
                                                               self.head_dim,
 | 
						|
                                                               past_k.size(2),
 | 
						|
                                                               current_kv_len +
 | 
						|
                                                               VLLM_KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
						|
                                                               dtype=past_k.dtype,
 | 
						|
                                                               device=device)
 | 
						|
                    new_cache_k[:] = past_k
 | 
						|
                    new_cache_v[:] = past_v
 | 
						|
                    past_k = new_cache_k
 | 
						|
                    past_v = new_cache_v
 | 
						|
 | 
						|
                current_key_states = key_states[batch: batch + 1, :, :, :]
 | 
						|
                current_value_states = value_states[batch: batch + 1, :, :, :]
 | 
						|
                current_key_states, current_value_states = append_kv_cache(past_k,
 | 
						|
                                                                           past_v,
 | 
						|
                                                                           current_key_states,
 | 
						|
                                                                           current_value_states)
 | 
						|
                updated_past_key_values.append((current_key_states, current_value_states))
 | 
						|
 | 
						|
                current_key_states = repeat_kv(current_key_states, self.num_key_value_groups)
 | 
						|
                current_value_states = repeat_kv(current_value_states, self.num_key_value_groups)
 | 
						|
 | 
						|
                current_query_states = query_states[batch: batch + 1, :, :, :]
 | 
						|
                attn_output, attn_weights = native_sdp(current_query_states,
 | 
						|
                                                       current_key_states,
 | 
						|
                                                       current_value_states,
 | 
						|
                                                       attention_mask[batch],
 | 
						|
                                                       1,
 | 
						|
                                                       1,
 | 
						|
                                                       current_kv_len,
 | 
						|
                                                       self.head_dim,
 | 
						|
                                                       self.num_heads,
 | 
						|
                                                       output_attentions)
 | 
						|
                if attn_output.size() != (1, self.num_heads, 1, self.head_dim):
 | 
						|
                    invalidInputError(False,
 | 
						|
                                      f"`attn_output` should be of size "
 | 
						|
                                      f"{(1, self.num_heads, 1, self.head_dim)}, but is"
 | 
						|
                                      f" {attn_output.size()}")
 | 
						|
                batched_attention_output.append(attn_output)
 | 
						|
            # For loop ends
 | 
						|
            # TODO: handle attention_weights later
 | 
						|
            attn_output = torch.concat(batched_attention_output, dim=0)
 | 
						|
            batched_attention_output.clear()
 | 
						|
            if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
						|
                invalidInputError(False,
 | 
						|
                                  f"`attn_output` should be of size "
 | 
						|
                                  f"{(bsz, self.num_heads, q_len, self.head_dim)}, but is"
 | 
						|
                                  f" {attn_output.size()}")
 | 
						|
            attn_output = attn_output.transpose(1, 2).contiguous()
 | 
						|
            attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
						|
            attn_output = self.o_proj(attn_output)
 | 
						|
            return attn_output, None, updated_past_key_values
 | 
						|
 | 
						|
    # Assume always use_cache
 | 
						|
    # prefill or decoding fast path
 | 
						|
    for batch in range(bsz):
 | 
						|
        updated_past_key_values.append((key_states[batch: batch + 1, :, :, :],
 | 
						|
                                        value_states[batch: batch+1, :, :, :]))
 | 
						|
 | 
						|
    # repeat k/v heads if n_kv_heads < n_heads
 | 
						|
    key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
 | 
						|
                                                                     dtype=attention_dtype)
 | 
						|
    value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
 | 
						|
                                                                         dtype=attention_dtype)
 | 
						|
    # Can also happens for decoding fast path
 | 
						|
    if isinstance(attention_mask, list):
 | 
						|
        # For decoding fast path
 | 
						|
        attention_mask = attention_mask[0]
 | 
						|
    attn_output, attn_weights = native_sdp(query_states,
 | 
						|
                                           key_states,
 | 
						|
                                           value_states,
 | 
						|
                                           attention_mask,
 | 
						|
                                           bsz,
 | 
						|
                                           q_len,
 | 
						|
                                           kv_seq_len,
 | 
						|
                                           self.head_dim,
 | 
						|
                                           self.num_heads,
 | 
						|
                                           output_attentions)
 | 
						|
 | 
						|
    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
						|
        invalidInputError(False,
 | 
						|
                          f"`attn_output` should be of size "
 | 
						|
                          f"{(bsz, self.num_heads, q_len, self.head_dim)}, but is"
 | 
						|
                          f" {attn_output.size()}")
 | 
						|
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
						|
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
						|
 | 
						|
    attn_output = self.o_proj(attn_output)
 | 
						|
    return attn_output.to(original_dtype), attn_weights, updated_past_key_values
 | 
						|
 | 
						|
 | 
						|
def llama_attention_forward_4_36(
 | 
						|
    self,
 | 
						|
    hidden_states: torch.Tensor,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_value: Optional[Cache] = None,
 | 
						|
    output_attentions: bool = False,
 | 
						|
    use_cache: bool = False,
 | 
						|
    **kwargs
 | 
						|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
						|
    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
						|
        forward_function = llama_attention_forward_4_36_quantized
 | 
						|
    else:
 | 
						|
        forward_function = llama_attention_forward_4_36_original
 | 
						|
    return forward_function(
 | 
						|
        self=self,
 | 
						|
        hidden_states=hidden_states,
 | 
						|
        attention_mask=attention_mask,
 | 
						|
        position_ids=position_ids,
 | 
						|
        past_key_value=past_key_value,
 | 
						|
        output_attentions=output_attentions,
 | 
						|
        use_cache=use_cache,
 | 
						|
        kwargs=kwargs
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def llama_attention_forward_4_36_quantized(
 | 
						|
    self,
 | 
						|
    hidden_states: torch.Tensor,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_value: Optional[Cache] = None,
 | 
						|
    output_attentions: bool = False,
 | 
						|
    use_cache: bool = False,
 | 
						|
    **kwargs
 | 
						|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
						|
    if "padding_mask" in kwargs:
 | 
						|
        warnings.warn(
 | 
						|
            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
 | 
						|
            "Please make sure use `attention_mask` instead.`"
 | 
						|
        )
 | 
						|
 | 
						|
    bsz, q_len, _ = hidden_states.size()
 | 
						|
    device = hidden_states.device
 | 
						|
    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
						|
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
 | 
						|
    qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
 | 
						|
    no_tp = not self.config.pretraining_tp > 1
 | 
						|
    decoding_fast_path = (no_tp and qtype_check and use_fuse_rope
 | 
						|
                          and enough_kv_room and bsz * q_len == 1)
 | 
						|
    if decoding_fast_path:
 | 
						|
        hidden_states = hidden_states.view(1, -1)
 | 
						|
        tmp_cache_k, tmp_cache_v = init_kv_cache(
 | 
						|
            bsz,
 | 
						|
            self.num_key_value_heads,
 | 
						|
            self.head_dim,
 | 
						|
            0,
 | 
						|
            1,
 | 
						|
            dtype=hidden_states.dtype,
 | 
						|
            device=device
 | 
						|
        )
 | 
						|
        import linear_q4_0
 | 
						|
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
						|
                                                                         self.q_proj.weight,
 | 
						|
                                                                         self.k_proj.weight,
 | 
						|
                                                                         self.v_proj.weight,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         tmp_cache_k, tmp_cache_v,
 | 
						|
                                                                         self.q_proj.weight.qtype,
 | 
						|
                                                                         self.v_proj.weight.qtype,
 | 
						|
                                                                         0,
 | 
						|
                                                                         self.head_dim,
 | 
						|
                                                                         self.rotary_emb.base,)
 | 
						|
    else:
 | 
						|
        query_states = self.q_proj(hidden_states)
 | 
						|
        key_states = self.k_proj(hidden_states)
 | 
						|
        value_states = self.v_proj(hidden_states)
 | 
						|
 | 
						|
        query_states = query_states.view(bsz, q_len,
 | 
						|
                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
						|
        key_states = key_states.view(bsz, q_len,
 | 
						|
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
        value_states = value_states.view(bsz, q_len,
 | 
						|
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
 | 
						|
        kv_seq_len = key_states.shape[-2]
 | 
						|
        if past_key_value is not None:
 | 
						|
            if self.layer_idx is None:
 | 
						|
                invalidInputError(
 | 
						|
                    False,
 | 
						|
                    f"The cache structure has changed since version v4.36."
 | 
						|
                    f" If you are using {self.__class__.__name__} "
 | 
						|
                    f"for auto-regressive decoding with k/v caching,"
 | 
						|
                    f" please make sure to initialize the attention class "
 | 
						|
                    "with a layer index."
 | 
						|
                )
 | 
						|
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
						|
        if use_fuse_rope:
 | 
						|
            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
						|
                                                                         key_states,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         "llama")
 | 
						|
        else:
 | 
						|
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
						|
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
						|
                                                            cos, sin, position_ids, "llama")
 | 
						|
    kv_seq_len = key_states.shape[-2]
 | 
						|
 | 
						|
    if len(past_key_value.key_cache) <= self.layer_idx:
 | 
						|
        attn_weights = torch.matmul(query_states,
 | 
						|
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
						|
 | 
						|
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
						|
            invalidInputError(
 | 
						|
                False,
 | 
						|
                f"Attention weights should be of size "
 | 
						|
                f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
						|
                f" {attn_weights.size()}"
 | 
						|
            )
 | 
						|
 | 
						|
        if attention_mask is not None:
 | 
						|
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
						|
                invalidInputError(
 | 
						|
                    False,
 | 
						|
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
						|
                    f" but is {attention_mask.size()}"
 | 
						|
                )
 | 
						|
            attn_weights = attn_weights + attention_mask
 | 
						|
 | 
						|
        if kv_seq_len >= 2048:
 | 
						|
            # for memory considerations, do not upcast attention to fp32 for long sequences
 | 
						|
            attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 | 
						|
        else:
 | 
						|
            # upcast attention to fp32
 | 
						|
            attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
						|
                                                 dtype=torch.float32).to(query_states.dtype)
 | 
						|
        attn_output = torch.matmul(attn_weights, value_states)
 | 
						|
        if use_cache:
 | 
						|
            cache_kwargs = None
 | 
						|
            key_states, value_states = past_key_value.update(key_states, value_states,
 | 
						|
                                                             self.layer_idx, cache_kwargs,
 | 
						|
                                                             new_layout=True)
 | 
						|
    else:
 | 
						|
        cache_kwargs = None  # Specific to RoPE models
 | 
						|
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
						|
                                                         self.layer_idx, cache_kwargs,
 | 
						|
                                                         new_layout=True)
 | 
						|
        kv_seq_len = key_states.shape[-2]
 | 
						|
        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
						|
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
						|
                                                            query_states.dtype)
 | 
						|
            key_states = repeat_kv(key_states, self.num_key_value_groups)\
 | 
						|
                .to(device, dtype=query_states.dtype)
 | 
						|
            value_states = repeat_kv(value_states, self.num_key_value_groups)\
 | 
						|
                .to(device, dtype=query_states.dtype)
 | 
						|
            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
						|
            attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
						|
            if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
						|
                invalidInputError(
 | 
						|
                    False,
 | 
						|
                    f"Attention weights should be of size"
 | 
						|
                    f" {(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
						|
                    f" but is {attn_weights.size()}"
 | 
						|
                )
 | 
						|
 | 
						|
            if attention_mask is not None:
 | 
						|
                if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
						|
                    invalidInputError(
 | 
						|
                        False,
 | 
						|
                        f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
 | 
						|
                        f" but is {attention_mask.size()}"
 | 
						|
                    )
 | 
						|
                attn_weights = attn_weights + attention_mask
 | 
						|
 | 
						|
            if kv_seq_len >= 2048:
 | 
						|
                # for memory considerations, do not upcast attention to fp32 for long sequences
 | 
						|
                attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 | 
						|
            else:
 | 
						|
                # upcast attention to fp32
 | 
						|
                attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
						|
                                                     dtype=torch.float32).to(query_states.dtype)
 | 
						|
            attn_output = torch.matmul(attn_weights, value_states)
 | 
						|
        else:
 | 
						|
            import linear_q4_0
 | 
						|
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
						|
                                              attention_mask)
 | 
						|
            attn_weights = None
 | 
						|
 | 
						|
    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
						|
        invalidInputError(
 | 
						|
            False,
 | 
						|
            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
 | 
						|
            f" but is {attn_output.size()}"
 | 
						|
        )
 | 
						|
 | 
						|
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
						|
 | 
						|
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
						|
 | 
						|
    if self.config.pretraining_tp > 1:
 | 
						|
        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
 | 
						|
        o_proj_slices = self.o_proj.weight.split(self.hidden_size
 | 
						|
                                                 // self.config.pretraining_tp, dim=1)
 | 
						|
        attn_output = sum([F.linear(attn_output[i],
 | 
						|
                                    o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
 | 
						|
    else:
 | 
						|
        attn_output = self.o_proj(attn_output)
 | 
						|
 | 
						|
    if not output_attentions:
 | 
						|
        attn_weights = None
 | 
						|
 | 
						|
    return attn_output, attn_weights, past_key_value
 | 
						|
 | 
						|
 | 
						|
def llama_attention_forward_4_36_original(
 | 
						|
    self,
 | 
						|
    hidden_states: torch.Tensor,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_value: Optional[Cache] = None,
 | 
						|
    output_attentions: bool = False,
 | 
						|
    use_cache: bool = False,
 | 
						|
    **kwargs
 | 
						|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
 | 
						|
    if "padding_mask" in kwargs:
 | 
						|
        warnings.warn(
 | 
						|
            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
 | 
						|
            "Please make sure use `attention_mask` instead.`"
 | 
						|
        )
 | 
						|
 | 
						|
    bsz, q_len, hidden_size = hidden_states.size()
 | 
						|
    device = hidden_states.device
 | 
						|
    # for flash attention
 | 
						|
    original_dtype = hidden_states.dtype
 | 
						|
 | 
						|
    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
						|
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
 | 
						|
    qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
 | 
						|
    no_tp = not self.config.pretraining_tp > 1
 | 
						|
    decoding_fast_path = (no_tp and qtype_check and use_fuse_rope and
 | 
						|
                          enough_kv_room and bsz * q_len == 1)
 | 
						|
    decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
 | 
						|
 | 
						|
    # single batch decoding fast path
 | 
						|
    # forward_qkv takes will perform QKV projection, rotary position embedding
 | 
						|
    # and save the key/value states to cache, then return query states and the
 | 
						|
    # extended key/value cache
 | 
						|
    if decoding_fast_path:
 | 
						|
        hidden_states = hidden_states.view(1, -1)
 | 
						|
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
						|
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
						|
        kv_seq_len = cache_k.shape[-2]
 | 
						|
        import linear_q4_0
 | 
						|
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
						|
                                                                         self.q_proj.weight,
 | 
						|
                                                                         self.k_proj.weight,
 | 
						|
                                                                         self.v_proj.weight,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         cache_k, cache_v,
 | 
						|
                                                                         self.q_proj.weight.qtype,
 | 
						|
                                                                         self.v_proj.weight.qtype,
 | 
						|
                                                                         kv_seq_len,
 | 
						|
                                                                         self.head_dim,
 | 
						|
                                                                         self.rotary_emb.base,)
 | 
						|
        kv_seq_len += 1
 | 
						|
        # update past_key_value's seem_tokens and kv caches.
 | 
						|
        if self.layer_idx == 0:
 | 
						|
            past_key_value.seen_tokens = kv_seq_len
 | 
						|
        past_key_value.key_cache[self.layer_idx] = key_states
 | 
						|
        past_key_value.value_cache[self.layer_idx] = value_states
 | 
						|
 | 
						|
    else:
 | 
						|
        if self.config.pretraining_tp > 1:
 | 
						|
            key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
 | 
						|
                                 self.config.pretraining_tp)
 | 
						|
            query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
 | 
						|
                                                    // self.config.pretraining_tp, dim=0)
 | 
						|
            key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
 | 
						|
            value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
 | 
						|
 | 
						|
            query_states = [F.linear(hidden_states, query_slices[i])
 | 
						|
                            for i in range(self.config.pretraining_tp)]
 | 
						|
            query_states = torch.cat(query_states, dim=-1)
 | 
						|
 | 
						|
            key_states = [F.linear(hidden_states, key_slices[i])
 | 
						|
                          for i in range(self.config.pretraining_tp)]
 | 
						|
            key_states = torch.cat(key_states, dim=-1)
 | 
						|
 | 
						|
            value_states = [F.linear(hidden_states, value_slices[i])
 | 
						|
                            for i in range(self.config.pretraining_tp)]
 | 
						|
            value_states = torch.cat(value_states, dim=-1)
 | 
						|
        else:
 | 
						|
            if fp16_fusion_check(self.q_proj, hidden_states, self.training) and \
 | 
						|
                    hidden_size == 4096:
 | 
						|
                # only use mm_qkv_out on pvc for llama-7b
 | 
						|
                if not hasattr(self, "qkv_proj_weight"):
 | 
						|
                    self.qkv_proj_weight = torch.stack([self.q_proj.weight,
 | 
						|
                                                        self.k_proj.weight,
 | 
						|
                                                        self.v_proj.weight]).contiguous()
 | 
						|
                    self.q_proj.weight.data = self.qkv_proj_weight[0, :, :]
 | 
						|
                    self.k_proj.weight.data = self.qkv_proj_weight[1, :, :]
 | 
						|
                    self.v_proj.weight.data = self.qkv_proj_weight[2, :, :]
 | 
						|
                    torch.xpu.empty_cache()
 | 
						|
                query_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
 | 
						|
                                           dtype=hidden_states.dtype, device=hidden_states.device)
 | 
						|
                key_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
 | 
						|
                                         dtype=hidden_states.dtype, device=hidden_states.device)
 | 
						|
                value_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
 | 
						|
                                           dtype=hidden_states.dtype, device=hidden_states.device)
 | 
						|
                torch.ops.torch_ipex.mm_qkv_out(
 | 
						|
                    hidden_states, self.qkv_proj_weight, None,
 | 
						|
                    query_states, key_states, value_states
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                if should_use_mm_int4_qkv(self, device):
 | 
						|
                    if not hasattr(self, "qkv_proj_qweight"):
 | 
						|
                        self.qkv_proj_qweight = fuse_qkv_weight(self.q_proj,
 | 
						|
                                                                self.k_proj,
 | 
						|
                                                                self.v_proj)
 | 
						|
                    import linear_q4_0
 | 
						|
                    qkv_states = linear_q4_0.mm_int4(hidden_states, self.qkv_proj_qweight)
 | 
						|
                    query_states = qkv_states[:, :, :hidden_size]
 | 
						|
                    key_states = qkv_states[:, :, hidden_size:2*hidden_size]
 | 
						|
                    value_states = qkv_states[:, :, 2*hidden_size:]
 | 
						|
                else:
 | 
						|
                    query_states = self.q_proj(hidden_states)
 | 
						|
                    key_states = self.k_proj(hidden_states)
 | 
						|
                    value_states = self.v_proj(hidden_states)
 | 
						|
 | 
						|
        query_states = query_states.view(bsz, q_len,
 | 
						|
                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
						|
        key_states = key_states.view(bsz, q_len,
 | 
						|
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
        value_states = value_states.view(bsz, q_len,
 | 
						|
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
						|
 | 
						|
        kv_seq_len = key_states.shape[-2]
 | 
						|
        if past_key_value is not None:
 | 
						|
            if self.layer_idx is None:
 | 
						|
                invalidInputError(False,
 | 
						|
                                  "The cache structure has changed since version v4.36. "
 | 
						|
                                  f"If you are using {self.__class__.__name__} for "
 | 
						|
                                  "auto-regressive decodingwith k/v caching, please make sure "
 | 
						|
                                  "to initialize the attention class with a layer index.")
 | 
						|
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
						|
 | 
						|
        if use_fuse_rope:
 | 
						|
            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
						|
                                                                         key_states,
 | 
						|
                                                                         position_ids,
 | 
						|
                                                                         "llama")
 | 
						|
        else:
 | 
						|
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
						|
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
						|
                                                            cos, sin, position_ids, "llama")
 | 
						|
 | 
						|
        if past_key_value is not None:
 | 
						|
            # update the number of seen tokens
 | 
						|
            if self.layer_idx == 0:
 | 
						|
                past_key_value.seen_tokens += key_states.shape[-2]
 | 
						|
 | 
						|
            # reuse k, v, self_attention
 | 
						|
            # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
 | 
						|
            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
						|
                past_key_value.key_cache.append(key_states)
 | 
						|
                past_key_value.value_cache.append(value_states)
 | 
						|
            else:
 | 
						|
                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
						|
                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
						|
 | 
						|
                if not enough_kv_room:
 | 
						|
                    # allocate new
 | 
						|
                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
						|
                                                       self.num_key_value_heads,  # Support GQA
 | 
						|
                                                       self.head_dim,
 | 
						|
                                                       cache_k.size(2),
 | 
						|
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
						|
                                                       dtype=cache_k.dtype,
 | 
						|
                                                       device=device)
 | 
						|
 | 
						|
                    new_c_k[:] = cache_k
 | 
						|
                    new_c_v[:] = cache_v
 | 
						|
                    cache_k = new_c_k
 | 
						|
                    cache_v = new_c_v
 | 
						|
 | 
						|
                key_states, value_states = append_kv_cache(cache_k,
 | 
						|
                                                           cache_v,
 | 
						|
                                                           key_states,
 | 
						|
                                                           value_states)
 | 
						|
 | 
						|
                # update past_key_value
 | 
						|
                past_key_value.key_cache[self.layer_idx] = key_states
 | 
						|
                past_key_value.value_cache[self.layer_idx] = value_states
 | 
						|
 | 
						|
    # repeat k/v heads if n_kv_heads < n_heads
 | 
						|
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
						|
    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
						|
 | 
						|
    if not self.training and not hidden_states.requires_grad and \
 | 
						|
            use_flash_attention(query_states, key_states, attention_mask):
 | 
						|
        # now only use flash attention for first token
 | 
						|
        attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
 | 
						|
                                                     key_states.to(device, dtype=torch.float16),
 | 
						|
                                                     value_states.to(device, dtype=torch.float16),
 | 
						|
                                                     is_causal=True)
 | 
						|
        attn_weights = None
 | 
						|
    elif not self.training and not hidden_states.requires_grad and \
 | 
						|
            use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
						|
        import linear_fp16_esimd
 | 
						|
        attn_output = linear_fp16_esimd.sdp_forward(query_states,
 | 
						|
                                                    key_states,
 | 
						|
                                                    value_states)
 | 
						|
        attn_output = attn_output.view(query_states.shape)
 | 
						|
        attn_weights = None
 | 
						|
    else:
 | 
						|
        # otherwise, use native attention
 | 
						|
        attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
 | 
						|
                                               attention_mask,
 | 
						|
                                               bsz, q_len, kv_seq_len,
 | 
						|
                                               self.head_dim, self.num_heads, output_attentions)
 | 
						|
 | 
						|
    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
						|
    if attn_output.size() != attn_output_size:
 | 
						|
        invalidInputError(False,
 | 
						|
                          f"`attn_output` should be of size {attn_output_size},"
 | 
						|
                          f" but is {attn_output.size()}")
 | 
						|
 | 
						|
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
						|
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
						|
 | 
						|
    if self.config.pretraining_tp > 1:
 | 
						|
        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
 | 
						|
        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
 | 
						|
                                                 dim=1)
 | 
						|
        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
 | 
						|
                           for i in range(self.config.pretraining_tp)])
 | 
						|
    else:
 | 
						|
        attn_output = self.o_proj(attn_output)
 | 
						|
 | 
						|
    if not output_attentions:
 | 
						|
        attn_weights = None
 | 
						|
 | 
						|
    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
						|
 | 
						|
 | 
						|
def native_sdp(query, key, value, attention_mask,
 | 
						|
               bsz, q_len, kv_seq_len, head_dim, num_heads, output_attentions):
 | 
						|
    if should_split_qkv_tensor(query, output_attentions):
 | 
						|
        return native_sdp_split_qkv_tensor(query, key, value, attention_mask,
 | 
						|
                                           bsz, q_len, kv_seq_len, head_dim, num_heads)
 | 
						|
    else:
 | 
						|
        attn_weights = torch.matmul(query.to(key.dtype),
 | 
						|
                                    key.transpose(2, 3)) / math.sqrt(head_dim)
 | 
						|
 | 
						|
        attn_weights_size = (bsz, num_heads, q_len, kv_seq_len)
 | 
						|
        if attn_weights.size() != attn_weights_size:
 | 
						|
            invalidInputError(False,
 | 
						|
                              f"Attention weights should be of size {attn_weights_size}, "
 | 
						|
                              f"but is {attn_weights.size()}")
 | 
						|
 | 
						|
        if attention_mask is not None:
 | 
						|
            attn_mask_size = (bsz, 1, q_len, kv_seq_len)
 | 
						|
            if attention_mask.size() != attn_mask_size:
 | 
						|
                invalidInputError(False,
 | 
						|
                                  f"Attention mask should be of size {attn_mask_size}, "
 | 
						|
                                  f"but is {attention_mask.size()}")
 | 
						|
            attn_weights = attn_weights + attention_mask
 | 
						|
 | 
						|
        if kv_seq_len >= 2048:
 | 
						|
            # for memory considerations, do not upcast attention to fp32 for long sequences
 | 
						|
            attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 | 
						|
        else:
 | 
						|
            # upcast attention to fp32
 | 
						|
            attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
						|
                                                 dtype=torch.float32).to(value.dtype)
 | 
						|
        attn_output = torch.matmul(attn_weights, value)
 | 
						|
        return attn_output, attn_weights
 | 
						|
 | 
						|
 | 
						|
def native_sdp_split_qkv_tensor(query, key, value, attention_mask,
 | 
						|
                                bsz, q_len, kv_seq_len, head_dim, num_heads):
 | 
						|
    block_size = 8
 | 
						|
    query_split = torch.split(query.to(key.dtype), block_size, dim=1)
 | 
						|
    key_split = torch.split(key.transpose(2, 3), block_size, dim=1)
 | 
						|
    value_split = torch.split(value, block_size, dim=1)
 | 
						|
    attn_output = torch.empty(bsz, num_heads, q_len, head_dim).to(query.device)
 | 
						|
    idx = 0
 | 
						|
    for q, k, v in zip(query_split, key_split, value_split):
 | 
						|
        attn_weights_split = torch.matmul(q, k) / math.sqrt(head_dim)
 | 
						|
        block_actual_size = attn_weights_split.size(1)
 | 
						|
        attn_weights_split_size = (bsz, block_actual_size, q_len, kv_seq_len)
 | 
						|
        if attn_weights_split.size() != attn_weights_split_size:
 | 
						|
            invalidInputError(False,
 | 
						|
                              f"Splitted attention weights should be of size "
 | 
						|
                              f"{attn_weights_split_size}, but is {attn_weights_split.size()}")
 | 
						|
 | 
						|
        if attention_mask is not None:
 | 
						|
            attn_mask_size = (bsz, 1, q_len, kv_seq_len)
 | 
						|
            if attention_mask.size() != attn_mask_size:
 | 
						|
                invalidInputError(False,
 | 
						|
                                  f"Attention mask should be of size {attn_mask_size}, "
 | 
						|
                                  f"but is {attention_mask.size()}")
 | 
						|
            attn_weights_split = attn_weights_split + attention_mask
 | 
						|
        attn_weights_split = nn.functional.softmax(attn_weights_split, dim=-1)
 | 
						|
        attn_weights_split = torch.matmul(attn_weights_split, v)
 | 
						|
        attn_output[:, idx:idx+block_actual_size, :, :] = attn_weights_split
 | 
						|
        idx = idx + block_actual_size
 | 
						|
    return attn_output, None
 | 
						|
 | 
						|
 | 
						|
def llama_model_selective_batching_forward_4_31(
 | 
						|
    self,
 | 
						|
    input_ids: torch.LongTensor = None,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
						|
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
    use_cache: Optional[bool] = None,
 | 
						|
    output_attentions: Optional[bool] = None,
 | 
						|
    output_hidden_states: Optional[bool] = None,
 | 
						|
    return_dict: Optional[bool] = None,
 | 
						|
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
						|
    if output_attentions is not None:
 | 
						|
        output_attentions = output_attentions
 | 
						|
    else:
 | 
						|
        output_attentions = self.config.output_attentions
 | 
						|
    output_hidden_states = (
 | 
						|
        output_hidden_states if output_hidden_states is not None
 | 
						|
        else self.config.output_hidden_states
 | 
						|
    )
 | 
						|
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
						|
 | 
						|
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
						|
 | 
						|
    # retrieve input_ids and inputs_embeds
 | 
						|
    if input_ids is not None and inputs_embeds is not None:
 | 
						|
        invalidInputError(False,
 | 
						|
                          "You cannot specify both decoder_input_ids"
 | 
						|
                          " and decoder_inputs_embeds at the same time")
 | 
						|
    elif input_ids is not None:
 | 
						|
        batch_size, seq_length = input_ids.shape
 | 
						|
    elif inputs_embeds is not None:
 | 
						|
        batch_size, seq_length, _ = inputs_embeds.shape
 | 
						|
    else:
 | 
						|
        invalidInputError(False,
 | 
						|
                          "You have to specify either "
 | 
						|
                          "decoder_input_ids or decoder_inputs_embeds")
 | 
						|
 | 
						|
    # seq_length_with_past = seq_length
 | 
						|
    past_key_values_length = 0
 | 
						|
 | 
						|
    # The original position_ids in the format of [1, 1]
 | 
						|
    # However, this only applies when kv_len is the same for all the sequences
 | 
						|
    # We should set it to format of [batch, position_id]
 | 
						|
    # TODO: validate correctness
 | 
						|
    device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
						|
    if position_ids is None:
 | 
						|
        invalidInputError(False,
 | 
						|
                          "vLLM: position_ids should never be None")
 | 
						|
    else:
 | 
						|
        # print(f"Original position_ids is {position_ids}")
 | 
						|
        position_ids = position_ids.view(-1, seq_length)
 | 
						|
        # print(f"after position_ids is {position_ids}")
 | 
						|
    # if past_key_values is None:
 | 
						|
    #     # For prefill
 | 
						|
    #     position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device)
 | 
						|
    #     position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
 | 
						|
    # else:
 | 
						|
    #     past_key_values_length = []
 | 
						|
    #     for sequence_kv in past_key_values[0]:
 | 
						|
    #         key = sequence_kv[0]
 | 
						|
    #         past_key_values_length.append(key.shape[-2])
 | 
						|
    #     position_ids = torch.tensor(past_key_values_length, dtype=torch.long, device=device)
 | 
						|
    #     position_ids = position_ids.unsqueeze(0).view(-1, 1)
 | 
						|
 | 
						|
    if past_key_values is not None:
 | 
						|
        # past_key_values in the format of num_layers x num_seqs x 2
 | 
						|
        # TODO: this may be incorrect
 | 
						|
        past_key_values_length = past_key_values[0][0][0].shape[2]
 | 
						|
        # seq_length_with_past = seq_length_with_past + past_key_values_length
 | 
						|
 | 
						|
    # if position_ids is None:
 | 
						|
    #     device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
						|
    #     # [start, end)
 | 
						|
    #     position_ids = torch.arange(
 | 
						|
    #         past_key_values_length, seq_length +
 | 
						|
    #         past_key_values_length, dtype=torch.long, device=device
 | 
						|
    #     )
 | 
						|
    #     position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
 | 
						|
    # else:
 | 
						|
    #     position_ids = position_ids.view(-1, seq_length).long()
 | 
						|
 | 
						|
    if inputs_embeds is None:
 | 
						|
        inputs_embeds = self.embed_tokens(input_ids)
 | 
						|
    # embed positions
 | 
						|
    if attention_mask is None:
 | 
						|
        invalidInputError(False, "attention_mask should never be None")
 | 
						|
    # print(f"attention_mask before expanding: {attention_mask}")
 | 
						|
    if past_key_values is None:
 | 
						|
        attention_mask = self._prepare_decoder_attention_mask(
 | 
						|
            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        i = 0
 | 
						|
        for attn_mask in attention_mask:
 | 
						|
            past_key_value_length = past_key_values[0][i][0].shape[2]
 | 
						|
            new_mask = self._prepare_decoder_attention_mask(
 | 
						|
                attn_mask, (1, seq_length), inputs_embeds, past_key_value_length
 | 
						|
            )
 | 
						|
            attention_mask[i] = new_mask
 | 
						|
            i += 1
 | 
						|
 | 
						|
    hidden_states = inputs_embeds
 | 
						|
 | 
						|
    if self.gradient_checkpointing and self.training:
 | 
						|
        invalidInputError(False, "gradient_checkpointing is not supported")
 | 
						|
 | 
						|
    # decoder layers
 | 
						|
    all_hidden_states = () if output_hidden_states else None
 | 
						|
    all_self_attns = () if output_attentions else None
 | 
						|
    next_decoder_cache = () if use_cache else None
 | 
						|
 | 
						|
    for idx, decoder_layer in enumerate(self.layers):
 | 
						|
        if output_hidden_states:
 | 
						|
            all_hidden_states += (hidden_states,)
 | 
						|
 | 
						|
        past_key_value = past_key_values[idx] if past_key_values is not None else None
 | 
						|
 | 
						|
        if self.gradient_checkpointing and self.training:
 | 
						|
 | 
						|
            def create_custom_forward(module):
 | 
						|
                def custom_forward(*inputs):
 | 
						|
                    # None for past_key_value
 | 
						|
                    return module(*inputs, output_attentions, None)
 | 
						|
 | 
						|
                return custom_forward
 | 
						|
 | 
						|
            layer_outputs = torch.utils.checkpoint.checkpoint(
 | 
						|
                create_custom_forward(decoder_layer),
 | 
						|
                hidden_states,
 | 
						|
                attention_mask,
 | 
						|
                position_ids,
 | 
						|
                None,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            layer_outputs = decoder_layer(
 | 
						|
                hidden_states,
 | 
						|
                attention_mask=attention_mask,
 | 
						|
                position_ids=position_ids,
 | 
						|
                past_key_value=past_key_value,
 | 
						|
                output_attentions=output_attentions,
 | 
						|
                use_cache=use_cache,
 | 
						|
            )
 | 
						|
 | 
						|
        hidden_states = layer_outputs[0]
 | 
						|
 | 
						|
        if use_cache:
 | 
						|
            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
 | 
						|
 | 
						|
        if output_attentions:
 | 
						|
            all_self_attns += (layer_outputs[1],)
 | 
						|
 | 
						|
    hidden_states = self.norm(hidden_states)
 | 
						|
 | 
						|
    # add hidden states from the last decoder layer
 | 
						|
    if output_hidden_states:
 | 
						|
        all_hidden_states += (hidden_states,)
 | 
						|
 | 
						|
    next_cache = next_decoder_cache if use_cache else None
 | 
						|
    if not return_dict:
 | 
						|
        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)  # noqa
 | 
						|
    return BaseModelOutputWithPast(
 | 
						|
        last_hidden_state=hidden_states,
 | 
						|
        past_key_values=next_cache,
 | 
						|
        hidden_states=all_hidden_states,
 | 
						|
        attentions=all_self_attns,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
# For training
 | 
						|
def llama_attention_fast_forward(
 | 
						|
    self,
 | 
						|
    hidden_states: torch.Tensor,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
						|
    output_attentions: bool = False,
 | 
						|
    use_cache: bool = False,
 | 
						|
    padding_mask: Optional[torch.LongTensor] = None,
 | 
						|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
						|
    bsz, q_len, _ = hidden_states.size()
 | 
						|
    device = hidden_states.device
 | 
						|
    use_fast_rope = should_use_fast_rope(self, hidden_states, position_ids)
 | 
						|
 | 
						|
    # Check for inference
 | 
						|
    if use_cache and past_key_value is not None and q_len == 1:
 | 
						|
        A, past_key_value = llama_attention_forward_4_31(
 | 
						|
            self,
 | 
						|
            hidden_states,
 | 
						|
            past_key_value,
 | 
						|
            position_ids,
 | 
						|
        )
 | 
						|
        return A, None, past_key_value
 | 
						|
 | 
						|
    if self.config.pretraining_tp > 1:
 | 
						|
        key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
 | 
						|
                             self.config.pretraining_tp)
 | 
						|
        query_slices = self.q_proj.weight.split(
 | 
						|
            (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
 | 
						|
        )
 | 
						|
        key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
 | 
						|
        value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
 | 
						|
 | 
						|
        query_states = [F.linear(hidden_states, query_slices[i])
 | 
						|
                        for i in range(self.config.pretraining_tp)]
 | 
						|
        query_states = torch.cat(query_states, dim=-1)
 | 
						|
 | 
						|
        key_states = [F.linear(hidden_states, key_slices[i])
 | 
						|
                      for i in range(self.config.pretraining_tp)]
 | 
						|
        key_states = torch.cat(key_states, dim=-1)
 | 
						|
 | 
						|
        value_states = [F.linear(hidden_states, value_slices[i])
 | 
						|
                        for i in range(self.config.pretraining_tp)]
 | 
						|
        value_states = torch.cat(value_states, dim=-1)
 | 
						|
 | 
						|
    else:
 | 
						|
        query_states = self.q_proj(hidden_states)
 | 
						|
        key_states = self.k_proj(hidden_states)
 | 
						|
        value_states = self.v_proj(hidden_states)
 | 
						|
 | 
						|
    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
						|
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
 | 
						|
                                 self.head_dim).transpose(1, 2)
 | 
						|
    value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
 | 
						|
                                     self.head_dim).transpose(1, 2)
 | 
						|
 | 
						|
    kv_seq_len = key_states.shape[-2]
 | 
						|
    if past_key_value is not None:
 | 
						|
        kv_seq_len += past_key_value[0].shape[-2]
 | 
						|
 | 
						|
    if use_fast_rope:
 | 
						|
        from ipex_llm.transformers.layers.rope_embedding import apply_fast_rope_embedding
 | 
						|
        query_states, key_states = apply_fast_rope_embedding(query_states,
 | 
						|
                                                             key_states,
 | 
						|
                                                             position_ids,
 | 
						|
                                                             "llama")
 | 
						|
    else:
 | 
						|
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
						|
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
						|
                                                        cos, sin, position_ids, "llama")
 | 
						|
 | 
						|
    if past_key_value is not None:
 | 
						|
        # reuse k, v, self_attention
 | 
						|
        key_states = torch.cat([past_key_value[0], key_states], dim=2)
 | 
						|
        value_states = torch.cat([past_key_value[1], value_states], dim=2)
 | 
						|
 | 
						|
    past_key_value = (key_states, value_states) if use_cache else None
 | 
						|
 | 
						|
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
						|
    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
						|
 | 
						|
    attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
 | 
						|
                                           attention_mask,
 | 
						|
                                           bsz, q_len, kv_seq_len,
 | 
						|
                                           self.head_dim, self.num_heads, output_attentions)
 | 
						|
 | 
						|
    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
						|
    if attn_output.size() != attn_output_size:
 | 
						|
        invalidInputError(False,
 | 
						|
                          f"`attn_output` should be of size {attn_output_size},"
 | 
						|
                          f" but is {attn_output.size()}")
 | 
						|
 | 
						|
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
						|
 | 
						|
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
						|
 | 
						|
    if self.config.pretraining_tp > 1:
 | 
						|
        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
 | 
						|
        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
 | 
						|
                                                 dim=1)
 | 
						|
        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
 | 
						|
                           for i in range(self.config.pretraining_tp)])
 | 
						|
    else:
 | 
						|
        attn_output = self.o_proj(attn_output)
 | 
						|
 | 
						|
    if not output_attentions:
 | 
						|
        attn_weights = None
 | 
						|
 | 
						|
    return attn_output, attn_weights, past_key_value
 | 
						|
 | 
						|
 | 
						|
def llama_model_forward_4_36_internal(
 | 
						|
    self,
 | 
						|
    input_ids: torch.LongTensor = None,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
						|
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
    use_cache: Optional[bool] = None,
 | 
						|
    output_attentions: Optional[bool] = None,
 | 
						|
    output_hidden_states: Optional[bool] = None,
 | 
						|
    return_dict: Optional[bool] = None,
 | 
						|
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
						|
    output_attentions = output_attentions if output_attentions is not None else \
 | 
						|
        self.config.output_attentions
 | 
						|
    output_hidden_states = (
 | 
						|
        output_hidden_states if output_hidden_states is not None else
 | 
						|
        self.config.output_hidden_states
 | 
						|
    )
 | 
						|
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
						|
 | 
						|
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
						|
 | 
						|
    # retrieve input_ids and inputs_embeds
 | 
						|
    if input_ids is not None and inputs_embeds is not None:
 | 
						|
        invalidInputError(False,
 | 
						|
                          "You cannot specify both input_ids and inputs_embeds at the same time")
 | 
						|
    elif input_ids is not None:
 | 
						|
        batch_size, seq_length = input_ids.shape[:2]
 | 
						|
    elif inputs_embeds is not None:
 | 
						|
        batch_size, seq_length = inputs_embeds.shape[:2]
 | 
						|
    else:
 | 
						|
        invalidInputError(False, "You have to specify either input_ids or inputs_embeds")
 | 
						|
 | 
						|
    past_key_values_length = 0
 | 
						|
    if use_cache:
 | 
						|
        use_legacy_cache = not isinstance(past_key_values, Cache)
 | 
						|
        if use_legacy_cache:
 | 
						|
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
 | 
						|
        past_key_values_length = past_key_values.get_usable_length(seq_length)
 | 
						|
 | 
						|
    if position_ids is None:
 | 
						|
        device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
						|
        position_ids = torch.arange(
 | 
						|
            past_key_values_length, seq_length + past_key_values_length,
 | 
						|
            dtype=torch.long, device=device
 | 
						|
        )
 | 
						|
        position_ids = position_ids.unsqueeze(0)
 | 
						|
 | 
						|
    if inputs_embeds is None:
 | 
						|
        inputs_embeds = self.embed_tokens(input_ids)
 | 
						|
 | 
						|
    if self._use_flash_attention_2:
 | 
						|
        # 2d mask is passed through the layers
 | 
						|
        attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) \
 | 
						|
            else None
 | 
						|
    elif self._use_sdpa and not output_attentions:
 | 
						|
        # output_attentions=True can not be supported when using SDPA, and we fall back on
 | 
						|
        # the manual implementation that requires a 4D causal mask in all cases.
 | 
						|
        from transformers.models.llama.modeling_llama import \
 | 
						|
            _prepare_4d_causal_attention_mask_for_sdpa
 | 
						|
        attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
 | 
						|
            attention_mask,
 | 
						|
            (batch_size, seq_length),
 | 
						|
            inputs_embeds,
 | 
						|
            past_key_values_length,
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        # 4d mask is passed through the layers
 | 
						|
        from transformers.models.llama.modeling_llama import _prepare_4d_causal_attention_mask
 | 
						|
        attention_mask = _prepare_4d_causal_attention_mask(
 | 
						|
            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
 | 
						|
        )
 | 
						|
 | 
						|
    # embed positions
 | 
						|
    hidden_states = inputs_embeds
 | 
						|
 | 
						|
    if self.gradient_checkpointing and self.training:
 | 
						|
        if use_cache:
 | 
						|
            logger.warning_once(
 | 
						|
                "`use_cache=True` is incompatible with gradient checkpointing."
 | 
						|
                " Setting `use_cache=False`..."
 | 
						|
            )
 | 
						|
            use_cache = False
 | 
						|
 | 
						|
    # decoder layers
 | 
						|
    all_hidden_states = () if output_hidden_states else None
 | 
						|
    all_self_attns = () if output_attentions else None
 | 
						|
    next_decoder_cache = None
 | 
						|
 | 
						|
    for decoder_layer in self.layers:
 | 
						|
        if output_hidden_states:
 | 
						|
            all_hidden_states += (hidden_states,)
 | 
						|
 | 
						|
        if self.gradient_checkpointing and self.training:
 | 
						|
            layer_outputs = self._gradient_checkpointing_func(
 | 
						|
                decoder_layer.__call__,
 | 
						|
                hidden_states,
 | 
						|
                attention_mask,
 | 
						|
                position_ids,
 | 
						|
                past_key_values,
 | 
						|
                output_attentions,
 | 
						|
                use_cache,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            # bigdl-llm changes:
 | 
						|
            curr_device = decoder_layer.input_layernorm.weight.device
 | 
						|
            if attention_mask is not None:
 | 
						|
                attention_mask = attention_mask.to(curr_device)
 | 
						|
            if position_ids is not None:
 | 
						|
                position_ids = position_ids.to(curr_device)
 | 
						|
            # bigdl-llm changes end
 | 
						|
            layer_outputs = decoder_layer(
 | 
						|
                hidden_states,
 | 
						|
                attention_mask=attention_mask,
 | 
						|
                position_ids=position_ids,
 | 
						|
                past_key_value=past_key_values,
 | 
						|
                output_attentions=output_attentions,
 | 
						|
                use_cache=use_cache,
 | 
						|
            )
 | 
						|
 | 
						|
        hidden_states = layer_outputs[0]
 | 
						|
 | 
						|
        if use_cache:
 | 
						|
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
						|
 | 
						|
        if output_attentions:
 | 
						|
            all_self_attns += (layer_outputs[1],)
 | 
						|
 | 
						|
    hidden_states = self.norm(hidden_states)
 | 
						|
 | 
						|
    # add hidden states from the last decoder layer
 | 
						|
    if output_hidden_states:
 | 
						|
        all_hidden_states += (hidden_states,)
 | 
						|
 | 
						|
    next_cache = None
 | 
						|
    if use_cache:
 | 
						|
        next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache \
 | 
						|
            else next_decoder_cache
 | 
						|
    if not return_dict:
 | 
						|
        return tuple(v for v in [hidden_states, next_cache,
 | 
						|
                                 all_hidden_states, all_self_attns] if v is not None)
 | 
						|
    return BaseModelOutputWithPast(
 | 
						|
        last_hidden_state=hidden_states,
 | 
						|
        past_key_values=next_cache,
 | 
						|
        hidden_states=all_hidden_states,
 | 
						|
        attentions=all_self_attns,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def llama_model_forward(
 | 
						|
    self,
 | 
						|
    input_ids: torch.LongTensor = None,
 | 
						|
    attention_mask: Optional[torch.Tensor] = None,
 | 
						|
    position_ids: Optional[torch.LongTensor] = None,
 | 
						|
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
						|
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
    use_cache: Optional[bool] = None,
 | 
						|
    output_attentions: Optional[bool] = None,
 | 
						|
    output_hidden_states: Optional[bool] = None,
 | 
						|
    return_dict: Optional[bool] = None,
 | 
						|
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
						|
    output_attentions = output_attentions if output_attentions is not None \
 | 
						|
        else self.config.output_attentions
 | 
						|
    output_hidden_states = (
 | 
						|
        output_hidden_states if output_hidden_states is not None else
 | 
						|
        self.config.output_hidden_states
 | 
						|
    )
 | 
						|
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
						|
 | 
						|
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
						|
 | 
						|
    # retrieve input_ids and inputs_embeds
 | 
						|
    if input_ids is not None and inputs_embeds is not None:
 | 
						|
        invalidInputError(False,
 | 
						|
                          "You cannot specify both input_ids and inputs_embeds at the same time")
 | 
						|
    elif input_ids is not None:
 | 
						|
        batch_size, seq_length = input_ids.shape
 | 
						|
    elif inputs_embeds is not None:
 | 
						|
        batch_size, seq_length, _ = inputs_embeds.shape
 | 
						|
    else:
 | 
						|
        invalidInputError(False, "You have to specify either input_ids or inputs_embeds")
 | 
						|
 | 
						|
    seq_length_with_past = seq_length
 | 
						|
    past_key_values_length = 0
 | 
						|
 | 
						|
    if past_key_values is not None:
 | 
						|
        past_key_values_length = past_key_values[0][0].shape[2]
 | 
						|
        seq_length_with_past = seq_length_with_past + past_key_values_length
 | 
						|
 | 
						|
    if position_ids is None:
 | 
						|
        device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
						|
        position_ids = torch.arange(
 | 
						|
            past_key_values_length, seq_length + past_key_values_length,
 | 
						|
            dtype=torch.long, device=device
 | 
						|
        )
 | 
						|
        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
 | 
						|
    else:
 | 
						|
        position_ids = position_ids.view(-1, seq_length).long()
 | 
						|
 | 
						|
    if inputs_embeds is None:
 | 
						|
        inputs_embeds = self.embed_tokens(input_ids)
 | 
						|
    # embed positions
 | 
						|
    if attention_mask is None:
 | 
						|
        attention_mask = torch.ones(
 | 
						|
            (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
 | 
						|
        )
 | 
						|
        padding_mask = None
 | 
						|
    else:
 | 
						|
        if 0 in attention_mask:
 | 
						|
            padding_mask = attention_mask
 | 
						|
        else:
 | 
						|
            padding_mask = None
 | 
						|
 | 
						|
    attention_mask = self._prepare_decoder_attention_mask(
 | 
						|
        attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
 | 
						|
    )
 | 
						|
 | 
						|
    hidden_states = inputs_embeds
 | 
						|
 | 
						|
    if self.gradient_checkpointing and self.training:
 | 
						|
        if use_cache:
 | 
						|
            logger.warning_once(
 | 
						|
                "`use_cache=True` is incompatible with gradient checkpointing."
 | 
						|
                " Setting `use_cache=False`..."
 | 
						|
            )
 | 
						|
            use_cache = False
 | 
						|
 | 
						|
    # decoder layers
 | 
						|
    all_hidden_states = () if output_hidden_states else None
 | 
						|
    all_self_attns = () if output_attentions else None
 | 
						|
    next_decoder_cache = () if use_cache else None
 | 
						|
 | 
						|
    for idx, decoder_layer in enumerate(self.layers):
 | 
						|
        if output_hidden_states:
 | 
						|
            all_hidden_states += (hidden_states,)
 | 
						|
 | 
						|
        past_key_value = past_key_values[idx] if past_key_values is not None else None
 | 
						|
 | 
						|
        if self.gradient_checkpointing and self.training:
 | 
						|
 | 
						|
            def create_custom_forward(module):
 | 
						|
                def custom_forward(*inputs):
 | 
						|
                    # None for past_key_value
 | 
						|
                    return module(*inputs, past_key_value, output_attentions,
 | 
						|
                                  padding_mask=padding_mask)
 | 
						|
 | 
						|
                return custom_forward
 | 
						|
 | 
						|
            layer_outputs = torch.utils.checkpoint.checkpoint(
 | 
						|
                create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            # bigdl-llm changes:
 | 
						|
            #
 | 
						|
            # Avoid moving `attention_mask`` and `position_ids`` to other devices multiple times.
 | 
						|
            #
 | 
						|
            # When the model is partitioned on two different devices using
 | 
						|
            # `accelerate`'s `dispatch``, a hook to move inputs to the correct device is
 | 
						|
            # added to each layer's `forward``, which will result in moving `attention_mask`
 | 
						|
            # and `position_ids`, which allocated on device:0, to other devices for each
 | 
						|
            # decoder layer not in device:0.
 | 
						|
            #
 | 
						|
            # To avoid this, we move `attention_mask` and `position_ids` to the device of
 | 
						|
            # the current layer before the forward call, so that the moving is only done once
 | 
						|
            # for each devices other than devie:0.
 | 
						|
            #
 | 
						|
            curr_device = decoder_layer.input_layernorm.weight.device
 | 
						|
            if attention_mask is not None:
 | 
						|
                attention_mask = attention_mask.to(curr_device)
 | 
						|
            if position_ids is not None:
 | 
						|
                position_ids = position_ids.to(curr_device)
 | 
						|
            # bigdl-llm changes end
 | 
						|
            layer_outputs = decoder_layer(
 | 
						|
                hidden_states,
 | 
						|
                attention_mask=attention_mask,
 | 
						|
                position_ids=position_ids,
 | 
						|
                past_key_value=past_key_value,
 | 
						|
                output_attentions=output_attentions,
 | 
						|
                use_cache=use_cache,
 | 
						|
                padding_mask=padding_mask,
 | 
						|
            )
 | 
						|
 | 
						|
        hidden_states = layer_outputs[0]
 | 
						|
 | 
						|
        if use_cache:
 | 
						|
            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
 | 
						|
 | 
						|
        if output_attentions:
 | 
						|
            all_self_attns += (layer_outputs[1],)
 | 
						|
 | 
						|
    hidden_states = self.norm(hidden_states)
 | 
						|
 | 
						|
    # add hidden states from the last decoder layer
 | 
						|
    if output_hidden_states:
 | 
						|
        all_hidden_states += (hidden_states,)
 | 
						|
 | 
						|
    next_cache = next_decoder_cache if use_cache else None
 | 
						|
    if not return_dict:
 | 
						|
        return tuple(v for v in [hidden_states, next_cache,
 | 
						|
                                 all_hidden_states, all_self_attns] if v is not None)
 | 
						|
    return BaseModelOutputWithPast(
 | 
						|
        last_hidden_state=hidden_states,
 | 
						|
        past_key_values=next_cache,
 | 
						|
        hidden_states=all_hidden_states,
 | 
						|
        attentions=all_self_attns,
 | 
						|
    )
 |