* Update README in LLM GPU Examples * Update reference of Intel GPU * add cpu_embedding=True in comment * small fixes * update GPU/README.md and add explanation for cpu_embedding=True * address comments * fix small typos * add backtick for cpu_embedding=True * remove extra backtick in the doc * add period mark * update readme  | 
			||
|---|---|---|
| .. | ||
| readme.md | ||
| recognize.py | ||
Whisper
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper models on Intel GPUs. For illustration purposes, we utilize the openai/whisper-tiny as a reference Whisper model.
0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
Example: Recognize Tokens using generate() API
In the example recognize.py, we show a basic use case for a Whisper model to conduct transcription using generate() API, with BigDL-LLM INT4 optimizations on Intel GPUs.
1. Install
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install datasets soundfile librosa # required by audio processing
2. Configures OneAPI environment variables
source /opt/intel/oneapi/setvars.sh
3. Run
python ./recognize.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --repo-id-or-data-path REPO_ID_OR_DATA_PATH --language LANGUAGE
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the Whisper model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'openai/whisper-tiny'.--repo-id-or-data-path REPO_ID_OR_DATA_PATH: argument defining the huggingface repo id for the audio dataset to be downloaded, or the path to the huggingface dataset folder. It is default to be'hf-internal-testing/librispeech_asr_dummy'.--language LANGUAGE: argument defining language to be transcribed. It is default to beenglish.
Sample Output
openai/whisper-tiny
Inference time: xxxx s
-------------------- Output --------------------
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']