ipex-llm/python/llm/dev/benchmark/perplexity/ppl.py
Chen, Zhentao a8c866c32b add ppl benchmark (#9914)
* add ppl benchmark

* add license

* add readme

* add dataset argument

* add dataset usage

* fixed low bit args

* correct result

* fix terminal display

* fix ppl update

* enable fp16 fp32 bf16

* format the desc

* fix model_kwargs

* add more readme
2024-01-18 17:54:28 +08:00

84 lines
3.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import intel_extension_for_pytorch as ipex
import numpy as np
import torch
from tqdm import tqdm
from transformers import AutoTokenizer
from bigdl.llm.transformers import AutoModelForCausalLM
class PPL:
def __init__(self):
self.nll = 0
self.cnt = 0
def __call__(self, all_logits, labels):
'''
all_logits [seq_length, vocab_size]
labels [seq_length]
'''
seq_length = all_logits.shape[0]
for i in range(0, seq_length - 1):
logits = all_logits[i, :]
max_logit = np.amax(logits)
sum_exp = np.sum(np.exp(logits - max_logit))
# logits at time-step i is for predicting token at time-step (i+1)
next_tok = labels[i + 1]
log_softmax_of_tok = (logits[next_tok] - max_logit) - np.log(sum_exp)
self.nll += -log_softmax_of_tok
self.cnt += 1
return np.exp(self.nll / self.cnt)
def result(self):
return np.exp(self.nll / self.cnt)
def __str__(self):
return f"PPL: {np.exp(self.nll / self.cnt):.3f}"
class BigDLPPL:
def __init__(self, model_path, device, **model_kwargs) -> None:
model_kwargs['trust_remote_code'] = model_kwargs.get('trust_remote_code', True)
model_kwargs['optimize_model'] = model_kwargs.get('optimize_model', True)
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
if 'xpu' in device:
import intel_extension_for_pytorch as ipex
self.model.to(device)
self.ppl_evaluator = PPL()
def perplexity_hf(self, text):
inputs = self.tokenizer('\n\n'.join(text), return_tensors='pt').to(self.device)
input_ids = inputs['input_ids']
# attention_mask = inputs['attention_mask']
progress_bar = tqdm(range(0, input_ids.shape[1], 512))
for i0 in progress_bar:
input_ids_chunks = input_ids[:, i0:(i0+512)]
input_ids_chunks[:, 0] = 1
with torch.no_grad():
result = self.model.forward(input_ids_chunks, labels = input_ids_chunks, return_dict=True)
#print(f"ppl = {torch.exp(result.loss)}")
seq_len = result.logits.shape[1]
data = result.logits
data = data.to('cpu')
input_ids_chunks = input_ids_chunks.to('cpu')
self.ppl_evaluator(data.numpy()[0, seq_len//2:, :], input_ids_chunks.numpy()[0, seq_len//2:])
progress_bar.set_description(f"{self.ppl_evaluator}")
return self.ppl_evaluator.result()