| .. | ||
| Dockerfile | ||
| README.md | ||
| start-qlora-finetuning-on-xpu.sh | ||
Fine-tune LLM with BigDL LLM Container
The following shows how to fine-tune LLM with Quantization (QLoRA built on BigDL-LLM 4bit optimizations) in a docker environment, which is accelerated by Intel XPU.
1. Prepare Docker Image
You can download directly from Dockerhub like:
docker pull intelanalytics/bigdl-llm-finetune-qlora-xpu:2.5.0-SNAPSHOT
Or build the image from source:
export HTTP_PROXY=your_http_proxy
export HTTPS_PROXY=your_https_proxy
docker build \
  --build-arg http_proxy=${HTTP_PROXY} \
  --build-arg https_proxy=${HTTPS_PROXY} \
  -t intelanalytics/bigdl-llm-finetune-qlora-xpu:2.5.0-SNAPSHOT \
  -f ./Dockerfile .
2. Prepare Base Model, Data and Container
Here, we try to fine-tune a Llama2-7b with English Quotes dataset, and please download them and start a docker container with files mounted like below:
export BASE_MODE_PATH=your_downloaded_base_model_path
export DATA_PATH=your_downloaded_data_path
export HTTP_PROXY=your_http_proxy
export HTTPS_PROXY=your_https_proxy
docker run -itd \
   --net=host \
   --device=/dev/dri \
   --memory="32G" \
   --name=bigdl-llm-fintune-qlora-xpu \
   -e http_proxy=${HTTP_PROXY} \
   -e https_proxy=${HTTPS_PROXY} \
   -v $BASE_MODE_PATH:/model \
   -v $DATA_PATH:/data/english_quotes \
   --shm-size="16g" \
   intelanalytics/bigdl-llm-fintune-qlora-xpu:2.5.0-SNAPSHOT
The download and mount of base model and data to a docker container demonstrates a standard fine-tuning process. You can skip this step for a quick start, and in this way, the fine-tuning codes will automatically download the needed files:
export HTTP_PROXY=your_http_proxy
export HTTPS_PROXY=your_https_proxy
docker run -itd \
   --net=host \
   --device=/dev/dri \
   --memory="32G" \
   --name=bigdl-llm-fintune-qlora-xpu \
   -e http_proxy=${HTTP_PROXY} \
   -e https_proxy=${HTTPS_PROXY} \
   --shm-size="16g" \
   intelanalytics/bigdl-llm-fintune-qlora-xpu:2.5.0-SNAPSHOT
However, we do recommend you to handle them manually, because the automatical download can be blocked by Internet access and Huggingface authentication etc. according to different environment, and the manual method allows you to fine-tune in a custom way (with different base model and dataset).
3. Start Fine-Tuning
Enter the running container:
docker exec -it bigdl-llm-fintune-qlora-xpu bash
Then, start QLoRA fine-tuning:
bash start-qlora-finetuning-on-xpu.sh
After minutes, it is expected to get results like:
{'loss': 2.256, 'learning_rate': 0.0002, 'epoch': 0.03}
{'loss': 1.8869, 'learning_rate': 0.00017777777777777779, 'epoch': 0.06}
{'loss': 1.5334, 'learning_rate': 0.00015555555555555556, 'epoch': 0.1}
{'loss': 1.4975, 'learning_rate': 0.00013333333333333334, 'epoch': 0.13}
{'loss': 1.3245, 'learning_rate': 0.00011111111111111112, 'epoch': 0.16}
{'loss': 1.2622, 'learning_rate': 8.888888888888889e-05, 'epoch': 0.19}
{'loss': 1.3944, 'learning_rate': 6.666666666666667e-05, 'epoch': 0.22}
{'loss': 1.2481, 'learning_rate': 4.4444444444444447e-05, 'epoch': 0.26}
{'loss': 1.3442, 'learning_rate': 2.2222222222222223e-05, 'epoch': 0.29}
{'loss': 1.3256, 'learning_rate': 0.0, 'epoch': 0.32}
{'train_runtime': 204.4633, 'train_samples_per_second': 3.913, 'train_steps_per_second': 0.978, 'train_loss': 1.5072882556915284, 'epoch': 0.32}
100%|██████████████████████████████████████████████████████████████████████████████████████| 200/200 [03:24<00:00,  1.02s/it]
TrainOutput(global_step=200, training_loss=1.5072882556915284, metrics={'train_runtime': 204.4633, 'train_samples_per_second': 3.913, 'train_steps_per_second': 0.978, 'train_loss': 1.5072882556915284, 'epoch': 0.32})