* Fix Baichuan2 prompt format * Fix Baichuan2 README * Change baichuan2 prompt info * Change baichuan2 prompt info
		
			
				
	
	
		
			76 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			76 lines
		
	
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						||
# Copyright 2016 The BigDL Authors.
 | 
						||
#
 | 
						||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
# you may not use this file except in compliance with the License.
 | 
						||
# You may obtain a copy of the License at
 | 
						||
#
 | 
						||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						||
#
 | 
						||
# Unless required by applicable law or agreed to in writing, software
 | 
						||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
# See the License for the specific language governing permissions and
 | 
						||
# limitations under the License.
 | 
						||
#
 | 
						||
 | 
						||
import torch
 | 
						||
import time
 | 
						||
import argparse
 | 
						||
 | 
						||
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
						||
from bigdl.llm import optimize_model
 | 
						||
 | 
						||
# prompt format referred from https://github.com/baichuan-inc/Baichuan2/issues/227 
 | 
						||
# and https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/main/generation_utils.py#L7-L49
 | 
						||
# For English prompt, you are recommended to change the prompt format.
 | 
						||
BAICHUAN_PROMPT_FORMAT = "<reserved_106> {prompt} <reserved_107>"
 | 
						||
 | 
						||
if __name__ == '__main__':
 | 
						||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Baichuan2 model')
 | 
						||
    parser.add_argument('--repo-id-or-model-path', type=str, default="baichuan-inc/Baichuan2-7B-Chat",
 | 
						||
                        help='The huggingface repo id for the Baichuan2 model to be downloaded'
 | 
						||
                             ', or the path to the huggingface checkpoint folder')
 | 
						||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
						||
                        help='Prompt to infer')
 | 
						||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						||
                        help='Max tokens to predict')
 | 
						||
 | 
						||
    args = parser.parse_args()
 | 
						||
    model_path = args.repo_id_or_model_path
 | 
						||
 | 
						||
    # Load model
 | 
						||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						||
                                                 trust_remote_code=True,
 | 
						||
                                                 torch_dtype='auto',
 | 
						||
                                                 low_cpu_mem_usage=True)
 | 
						||
 | 
						||
    # With only one line to enable BigDL-LLM optimization on model
 | 
						||
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
 | 
						||
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						||
    model = optimize_model(model)
 | 
						||
 | 
						||
    model = model.to('xpu')
 | 
						||
 | 
						||
    # Load tokenizer
 | 
						||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						||
    
 | 
						||
    # Generate predicted tokens
 | 
						||
    with torch.inference_mode():
 | 
						||
        prompt = BAICHUAN2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
						||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						||
        # ipex model needs a warmup, then inference time can be accurate
 | 
						||
        output = model.generate(input_ids,
 | 
						||
                                max_new_tokens=args.n_predict)
 | 
						||
 | 
						||
        # start inference
 | 
						||
        st = time.time()
 | 
						||
        output = model.generate(input_ids,
 | 
						||
                                max_new_tokens=args.n_predict)
 | 
						||
        torch.xpu.synchronize()
 | 
						||
        end = time.time()
 | 
						||
        output = output.cpu()
 | 
						||
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						||
        print(f'Inference time: {end-st} s')
 | 
						||
        print('-'*20, 'Output', '-'*20)
 | 
						||
        print(output_str)
 |