* add entry point to llm-serving-xpu * manually build * manually build * add entry point to llm-serving-xpu * manually build * add entry point to llm-serving-xpu * add entry point to llm-serving-xpu * add entry point to llm-serving-xpu |
||
|---|---|---|
| .. | ||
| Dockerfile | ||
| entrypoint.sh | ||
| README.md | ||
Build/Use BigDL-LLM-serving xpu image
Build Image
docker build \
--build-arg http_proxy=.. \
--build-arg https_proxy=.. \
--build-arg no_proxy=.. \
--rm --no-cache -t intelanalytics/bigdl-llm-serving-xpu:2.4.0-SNAPSHOT .
Use the image for doing xpu serving
To map the xpu into the container, you need to specify --device=/dev/dri when booting the container.
An example could be:
#/bin/bash
export DOCKER_IMAGE=intelanalytics/bigdl-llm-serving-xpu:2.4.0-SNAPSHOT
sudo docker run -itd \
--net=host \
--device=/dev/dri \
--memory="32G" \
--name=CONTAINER_NAME \
--shm-size="16g" \
$DOCKER_IMAGE
After the container is booted, you could get into the container through docker exec.
To verify the device is successfully mapped into the container, run sycl-ls to check the result. In a machine with Arc A770, the sampled output is:
root@arda-arc12:/# sycl-ls
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
After the container is booted, you could get into the container through docker exec.
To run model-serving using BigDL-LLM as backend, you can refer to this document.