ipex-llm/python/llm/example/pytorch-models/bert/extract_feature.py
2023-09-18 16:18:35 +08:00

55 lines
2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import BertTokenizer, BertModel
from bigdl.llm import optimize_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Extract the feature of given text using BERT model')
parser.add_argument('--repo-id-or-model-path', type=str, default="bert-large-uncased",
help='The huggingface repo id for the BERT (e.g. `bert-large-uncased`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--text', type=str, default="This is an example text for feature extraction.",
help='Text to extract features')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = BertModel.from_pretrained(model_path,
torch_dtype="auto",
low_cpu_mem_usage=True)
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
# Load tokenizer
tokenizer = BertTokenizer.from_pretrained(model_path)
# Extract the feature of given text
text = args.text
encoded_input = tokenizer(text, return_tensors='pt')
st = time.time()
output = model(**encoded_input)
end = time.time()
print(f'Time cost: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output)