ipex-llm/python/llm/example/GPU
2024-07-04 18:03:57 +08:00
..
Applications Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
Deepspeed-AutoTP Fix import error of ds autotp (#11307) 2024-06-13 16:22:52 +08:00
Deepspeed-AutoTP-FastAPI Fix import error of ds autotp (#11307) 2024-06-13 16:22:52 +08:00
HF-Transformers-AutoModels Fix codegeex2 transformers version (#11487) 2024-07-02 15:09:28 +08:00
LangChain add langchain vllm interface (#11121) 2024-05-24 17:19:27 +08:00
LlamaIndex Remove oneAPI pip install command in related examples (#11030) 2024-05-16 10:46:29 +08:00
LLM-Finetuning fix non-string deepseed config path bug (#11476) 2024-07-01 15:53:50 +08:00
Long-Context Remove oneAPI pip install command in related examples (#11030) 2024-05-16 10:46:29 +08:00
Lookahead/llama2 Add lookahead GPU example (#10785) 2024-04-17 17:41:55 +08:00
ModelScope-Models Remove oneAPI pip install command in related examples (#11030) 2024-05-16 10:46:29 +08:00
Pipeline-Parallel-FastAPI Add pp_serving verified models (#11498) 2024-07-03 14:57:09 +08:00
Pipeline-Parallel-Inference Support pipeline parallel for qwen-vl (#11503) 2024-07-04 18:03:57 +08:00
PyTorch-Models Fix codegeex2 transformers version (#11487) 2024-07-02 15:09:28 +08:00
Speculative-Decoding Fix IPEX auto importer (#11192) 2024-06-04 16:57:18 +08:00
StableDiffusion Add Stable Diffusion examples on GPU and CPU (#11166) 2024-06-12 16:33:25 +08:00
vLLM-Serving LLM: Add CPU vLLM entrypoint (#11083) 2024-05-24 09:16:59 +08:00
README.md Add Stable Diffusion examples on GPU and CPU (#11166) 2024-06-12 16:33:25 +08:00

IPEX-LLM Examples on Intel GPU

This folder contains examples of running IPEX-LLM on Intel GPU:

  • Applications: running LLM applications (such as autogen) on IPEX-LLM
  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on IPEX-LLM (using the standard AutoModel APIs)
  • LLM-Finetuning: running finetuning (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with IPEX-LLM low-bit optimized models) on Intel GPUs
  • Deepspeed-AutoTP-FastAPI: running distributed inference using DeepSpeed AutoTP and start serving with FastAPI(with IPEX-LLM low-bit optimized models) on Intel GPUs
  • Pipeline-Parallel-Inference: running IPEX-LLM optimized low-bit model vertically partitioned on multiple Intel GPUs
  • Pipeline-Parallel-FastAPI: running IPEX-LLM serving with FastAPI on multiple Intel GPUs in pipeline parallel fasion
  • LangChain: running LangChain applications on IPEX-LLM
  • PyTorch-Models: running any PyTorch model on IPEX-LLM (with "one-line code change")
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel GPUs
  • ModelScope-Models: running ModelScope model with IPEX-LLM on Intel GPUs
  • Long-Context: running long-context generation with IPEX-LLM on Intel Arc™ A770 Graphics.
  • StableDiffusion: running stable diffusion with IPEX-LLM on Intel GPUs.

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.