75 lines
3.3 KiB
Python
75 lines
3.3 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import time
|
|
import argparse
|
|
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
from transformers import AutoTokenizer, GenerationConfig
|
|
|
|
# you could tune the prompt based on your own model,
|
|
# here the prompt tuning refers to https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py
|
|
MPT_PROMPT_FORMAT = "<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MPT model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="mosaicml/mpt-7b-chat",
|
|
help='The huggingface repo id for the MPT models'
|
|
'(e.g. `mosaicml/mpt-7b-chat` and `mosaicml/mpt-30b-chat`) to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
trust_remote_code=True)
|
|
|
|
# Load tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
|
trust_remote_code=True)
|
|
|
|
# Generate predicted tokens
|
|
with torch.inference_mode():
|
|
prompt = MPT_PROMPT_FORMAT.format(prompt=args.prompt)
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
# enabling `use_cache=True` allows the model to utilize the previous
|
|
# key/values attentions to speed up decoding;
|
|
# to obtain optimal performance with IPEX-LLM INT4 optimizations,
|
|
# it is important to set use_cache=True for MPT models
|
|
mpt_generation_config = GenerationConfig(
|
|
max_new_tokens=args.n_predict,
|
|
use_cache=True,
|
|
pad_token_id=tokenizer.eos_token_id,
|
|
eos_token_id=tokenizer.eos_token_id
|
|
)
|
|
st = time.time()
|
|
output = model.generate(input_ids,
|
|
generation_config=mpt_generation_config)
|
|
end = time.time()
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
print(f'Inference time: {end-st} s')
|
|
print('-'*20, 'Prompt', '-'*20)
|
|
print(prompt)
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(output_str)
|