160 lines
5.6 KiB
Python
160 lines
5.6 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# ===========================================================================
|
|
#
|
|
# This file is adapted from
|
|
# https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py
|
|
# which is licensed under the MIT license:
|
|
#
|
|
# MIT License
|
|
#
|
|
# Copyright (c) 2023 MIT HAN Lab
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import warnings
|
|
import torch
|
|
import argparse
|
|
import os, sys
|
|
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
stream_llm_src = CURRENT_DIR + "/streaming_llm/"
|
|
sys.path.append(stream_llm_src)
|
|
from utils import load, download_url, load_jsonl
|
|
from enable_streaming_llm import enable_streaming_llm
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
@torch.no_grad()
|
|
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
|
|
outputs = model(
|
|
input_ids=input_ids,
|
|
past_key_values=past_key_values,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
|
|
generated_ids = [pred_token_idx.item()]
|
|
pos = 0
|
|
for _ in range(max_gen_len - 1):
|
|
outputs = model(
|
|
input_ids=pred_token_idx,
|
|
past_key_values=past_key_values,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
|
|
generated_ids.append(pred_token_idx.item())
|
|
generated_text = (
|
|
tokenizer.decode(
|
|
generated_ids,
|
|
skip_special_tokens=True,
|
|
clean_up_tokenization_spaces=True,
|
|
spaces_between_special_tokens=False,
|
|
)
|
|
.strip()
|
|
.split(" ")
|
|
)
|
|
|
|
now = len(generated_text) - 1
|
|
if now > pos:
|
|
print(" ".join(generated_text[pos:now]), end=" ", flush=True)
|
|
pos = now
|
|
|
|
if pred_token_idx == tokenizer.eos_token_id:
|
|
break
|
|
print(" ".join(generated_text[pos:]), flush=True)
|
|
return past_key_values
|
|
|
|
|
|
@torch.no_grad()
|
|
def streaming_inference(model, tokenizer, prompts, kv_cache=None, max_gen_len=1000):
|
|
past_key_values = None
|
|
for idx, prompt in enumerate(prompts):
|
|
prompt = "USER: " + prompt + "\n\nASSISTANT: "
|
|
print("\n" + prompt, end="")
|
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
|
seq_len = input_ids.shape[1]
|
|
if kv_cache is not None:
|
|
space_needed = seq_len + max_gen_len
|
|
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
|
|
|
|
past_key_values = greedy_generate(
|
|
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len
|
|
|
|
)
|
|
|
|
|
|
def main(args):
|
|
model, tokenizer = load(args.repo_id_or_model_path)
|
|
|
|
test_filepath = os.path.join(args.data_root, "mt_bench.jsonl")
|
|
print(f"Loading data from {test_filepath} ...")
|
|
|
|
if not os.path.exists(test_filepath):
|
|
download_url(
|
|
"https://raw.githubusercontent.com/lm-sys/FastChat/main/fastchat/llm_judge/data/mt_bench/question.jsonl",
|
|
args.data_root,
|
|
)
|
|
os.rename(os.path.join(args.data_root, "question.jsonl"), test_filepath)
|
|
|
|
list_data = load_jsonl(test_filepath)
|
|
prompts = []
|
|
for sample in list_data[1:5]:
|
|
prompts += sample["turns"]
|
|
|
|
if args.enable_streaming:
|
|
kv_cache = enable_streaming_llm(
|
|
model, start_size=args.start_size, recent_size=args.recent_size
|
|
)
|
|
else:
|
|
kv_cache = None
|
|
|
|
streaming_inference(
|
|
model,
|
|
tokenizer,
|
|
prompts,
|
|
kv_cache,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--repo-id-or-model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
|
|
)
|
|
parser.add_argument("--data-root", type=str, default="data/")
|
|
parser.add_argument("--enable-streaming", action="store_true")
|
|
parser.add_argument("--start-size", type=int, default=4)
|
|
parser.add_argument("--recent-size", type=int, default=2000)
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|