* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
213 lines
7.8 KiB
Python
213 lines
7.8 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from
|
|
# https://github.com/tloen/alpaca-lora/blob/main/finetune.py
|
|
#
|
|
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from https://github.com/tloen/alpaca-lora/blob/main/export_hf_checkpoint.py
|
|
#
|
|
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import transformers
|
|
|
|
|
|
def get_int_from_env(env_keys, default):
|
|
"""Returns the first positive env value found in the `env_keys` list or the default."""
|
|
for e in env_keys:
|
|
val = int(os.environ.get(e, -1))
|
|
if val >= 0:
|
|
return val
|
|
return int(default)
|
|
|
|
|
|
def wandb_check(wandb_project, wandb_watch, wandb_log_model):
|
|
"""Check if wandb related parameter passed or if set within environ"""
|
|
use_wandb = len(wandb_project) > 0 or (
|
|
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
|
|
)
|
|
# Only overwrite environ if wandb param passed
|
|
if len(wandb_project) > 0:
|
|
os.environ["WANDB_PROJECT"] = wandb_project
|
|
if len(wandb_watch) > 0:
|
|
os.environ["WANDB_WATCH"] = wandb_watch
|
|
if len(wandb_log_model) > 0:
|
|
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
|
|
return use_wandb
|
|
|
|
|
|
def get_train_val_data(data, tokenizer, prompter, train_on_inputs,
|
|
add_eos_token, cutoff_len, val_set_size, seed=42):
|
|
"""Data processing to get train data and val data"""
|
|
def tokenize(prompt, add_eos_token=True):
|
|
# there's probably a way to do this with the tokenizer settings
|
|
# but again, gotta move fast
|
|
result = tokenizer(
|
|
prompt,
|
|
truncation=True,
|
|
max_length=cutoff_len,
|
|
padding=False,
|
|
return_tensors=None,
|
|
)
|
|
if (
|
|
result["input_ids"][-1] != tokenizer.eos_token_id
|
|
and len(result["input_ids"]) < cutoff_len
|
|
and add_eos_token
|
|
):
|
|
result["input_ids"].append(tokenizer.eos_token_id)
|
|
result["attention_mask"].append(1)
|
|
result["labels"] = result["input_ids"].copy()
|
|
return result
|
|
|
|
def generate_and_tokenize_prompt(data_point):
|
|
full_prompt = prompter.generate_prompt(
|
|
data_point["instruction"],
|
|
data_point["input"],
|
|
data_point["output"],
|
|
)
|
|
tokenized_full_prompt = tokenize(full_prompt)
|
|
if not train_on_inputs:
|
|
user_prompt = prompter.generate_prompt(
|
|
data_point["instruction"], data_point["input"]
|
|
)
|
|
tokenized_user_prompt = tokenize(
|
|
user_prompt, add_eos_token=add_eos_token
|
|
)
|
|
user_prompt_len = len(tokenized_user_prompt["input_ids"])
|
|
if add_eos_token:
|
|
user_prompt_len -= 1
|
|
tokenized_full_prompt["labels"] = [
|
|
-100
|
|
] * user_prompt_len + tokenized_full_prompt["labels"][
|
|
user_prompt_len:
|
|
] # could be sped up, probably
|
|
return tokenized_full_prompt
|
|
|
|
if val_set_size > 0:
|
|
train_val = data["train"].train_test_split(
|
|
test_size=val_set_size, shuffle=True, seed=seed
|
|
)
|
|
train_data = (
|
|
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
|
|
)
|
|
val_data = (
|
|
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
|
|
)
|
|
else:
|
|
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
|
|
val_data = None
|
|
return train_data, val_data
|
|
|
|
|
|
def merge_adapter(base_model, tokenizer, adapter_path, output_path):
|
|
"""Merge the adapter into the original model and save"""
|
|
import torch
|
|
from ipex_llm.transformers.qlora import PeftModel, LoraConfig
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
from ipex_llm.transformers.low_bit_linear import get_block_size
|
|
import tempfile
|
|
import shutil
|
|
|
|
lora_config = LoraConfig.from_json_file(os.path.join(adapter_path, "adapter_config.json"))
|
|
training_mode = lora_config.get("training_mode", "qlora")
|
|
qa_lora = training_mode == "qalora"
|
|
|
|
temp_dir = None
|
|
if qa_lora:
|
|
# Convert the qa-lora adapter to the correct shapes
|
|
# The default 4-bit format for qa_lora is sym_int4
|
|
block_size = get_block_size("sym_int4")
|
|
temp_dir = tempfile.TemporaryDirectory()
|
|
tmpdirname = os.path.join(temp_dir.name, "adapter")
|
|
try:
|
|
shutil.copytree(adapter_path, tmpdirname)
|
|
except Exception as e:
|
|
print(f"Failed to copy adapter dir, error: {e}")
|
|
mid_lora_path = os.path.join(tmpdirname, "adapter_model.bin")
|
|
|
|
adapter_path = os.path.join(adapter_path, "adapter_model.bin")
|
|
|
|
lora = torch.load(adapter_path, map_location='cpu')
|
|
# Get lora_a names
|
|
tmp_keys = [key for key in lora.keys() if 'lora_A' in key]
|
|
|
|
for tmp_key in tmp_keys:
|
|
lora_a = lora[tmp_key] / block_size
|
|
lora[tmp_key] = torch.repeat_interleave(lora_a, block_size, dim=1)
|
|
|
|
torch.save(lora, mid_lora_path)
|
|
adapter_path = tmpdirname
|
|
|
|
try:
|
|
base_model = AutoModelForCausalLM.from_pretrained(
|
|
base_model,
|
|
# load_in_low_bit="nf4", # should load the orignal model
|
|
torch_dtype=torch.float16,
|
|
device_map={"": "cpu"},
|
|
)
|
|
|
|
lora_model = PeftModel.from_pretrained(
|
|
base_model,
|
|
adapter_path,
|
|
device_map={"": "cpu"},
|
|
torch_dtype=torch.float16,
|
|
)
|
|
|
|
# merge weights - new merging method from peft
|
|
lora_model = lora_model.merge_and_unload()
|
|
|
|
lora_model.train(False)
|
|
|
|
lora_model_sd = lora_model.state_dict()
|
|
deloreanized_sd = {
|
|
k.replace("base_model.model.", ""): v
|
|
for k, v in lora_model_sd.items()
|
|
if "lora" not in k
|
|
}
|
|
|
|
base_model.save_pretrained(output_path, state_dict=deloreanized_sd)
|
|
tokenizer.save_pretrained(output_path)
|
|
except Exception as e:
|
|
print(f"Failed to merge the adapter, error: {e}.")
|
|
finally:
|
|
if qa_lora and temp_dir:
|
|
temp_dir.cleanup()
|