* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
87 lines
3.7 KiB
Python
87 lines
3.7 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
from transformers import AutoTokenizer
|
|
import argparse
|
|
import time
|
|
import numpy as np
|
|
|
|
|
|
torch.nn.Linear.reset_parameters = lambda x: None
|
|
seed=42
|
|
torch.manual_seed(seed)
|
|
np.random.seed(seed)
|
|
|
|
STARCODER_PROMPT_FORMAT = "{prompt}"
|
|
prompt = "def dfs_print_Fibonacci_sequence(n):"
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Mistral model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="bigcode/starcoder",
|
|
help='The huggingface repo id for the Mistral (e.g. `bigcode/starcoder` and `bigcode/tiny_starcoder_py`) to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--prompt', type=str, default=prompt,
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=128,
|
|
help='Max tokens to predict')
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
|
|
# Load model in optimized bf16 here.
|
|
# Set `speculative=True`` to enable speculative decoding,
|
|
# it only works when load_in_low_bit="fp16" on Intel GPU or load_in_low_bit="bf16" on latest Intel Xeon CPU
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
optimize_model=True,
|
|
torch_dtype=torch.bfloat16,
|
|
load_in_low_bit="bf16",
|
|
speculative=True,
|
|
torchscript=True,
|
|
trust_remote_code=True,
|
|
use_cache=True)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
|
with torch.inference_mode():
|
|
prompt = STARCODER_PROMPT_FORMAT.format(prompt=args.prompt)
|
|
inputs = tokenizer(prompt, return_tensors='pt')
|
|
input_ids = inputs.input_ids.to(model.device)
|
|
actual_in_len = input_ids.shape[1]
|
|
print("actual input_ids length:" + str(actual_in_len))
|
|
attention_mask = inputs.attention_mask.to(model.device)
|
|
|
|
# warmup
|
|
output = model.generate(input_ids,
|
|
max_new_tokens=args.n_predict,
|
|
attention_mask=attention_mask,
|
|
do_sample=False)
|
|
output_str = tokenizer.decode(output[0])
|
|
|
|
# speculative decoding
|
|
st = time.perf_counter()
|
|
output = model.generate(input_ids,
|
|
max_new_tokens=args.n_predict,
|
|
attention_mask=attention_mask,
|
|
do_sample=False)
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
end = time.perf_counter()
|
|
|
|
print(output_str)
|
|
print(f"Tokens generated {model.n_token_generated}")
|
|
print(f"E2E Generation time {(end - st):.4f}s")
|
|
print(f"First token latency {model.first_token_time:.4f}s")
|