ipex-llm/python/llm/example/CPU/PyTorch-Models/Model/rwkv/generate.py
Yining Wang 6930422b42 Add rwkv example (#9432)
* codeshell fix wrong urls

* restart runner

* add RWKV CPU & GPU example (rwkv-4-world-7b)

* restart runner

* update submodule

* fix runner

* runner-test

---------

Co-authored-by: Shengsheng Huang <shengsheng.huang@intel.com>
2024-02-28 11:41:00 +08:00

71 lines
3 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or ag8reed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
from bigdl.llm import optimize_model
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/RWKV/rwkv-4-world-7b
RWKV_PROMPT_FORMAT = "Question: {prompt}\n\nAnswer:"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for RWKV model')
parser.add_argument('--repo-id-or-model-path', type=str, default="RWKV/rwkv-4-world-7b",
help='The huggingface repo id for the RWKV model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese.",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=40,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# First load the model in fp16 dtype
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=torch.half)
# Call the `_rescale_layers` method, prepare to convert to int4
model.rwkv._rescale_layers()
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = RWKV_PROMPT_FORMAT.format(prompt = args.prompt)
inputs = tokenizer(prompt, return_tensors="pt")
st = time.time()
output = model.generate(inputs["input_ids"],
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)