* Add --modelscope option for glm-v4 and MiniCPM-V-2_6 * glm-edge * minicpm-v-2_6:don't use model_hub=modelscope when use lowbit; internvl2 --------- Co-authored-by: ATMxsp01 <shou.xu@intel.com>
148 lines
5.8 KiB
Python
148 lines
5.8 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
import os
|
|
import time
|
|
import argparse
|
|
import requests
|
|
import torch
|
|
from PIL import Image
|
|
from ipex_llm.transformers import AutoModel
|
|
from transformers import AutoProcessor
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for openbmb/MiniCPM-V-2_6 model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str,
|
|
help='The Hugging Face or ModelScope repo id for the MiniCPM-V-2_6 model to be downloaded'
|
|
', or the path to the checkpoint folder')
|
|
parser.add_argument("--lowbit-path", type=str,
|
|
default="",
|
|
help="The path to the saved model folder with IPEX-LLM low-bit optimization. "
|
|
"Leave it blank if you want to load from the original model. "
|
|
"If the path does not exist, model with low-bit optimization will be saved there."
|
|
"Otherwise, model with low-bit optimization will be loaded from the path.",
|
|
)
|
|
parser.add_argument('--image-url-or-path', type=str,
|
|
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
|
|
help='The URL or path to the image to infer')
|
|
parser.add_argument('--prompt', type=str, default="What is in the image?",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--stream', action='store_true',
|
|
help='Whether to chat in streaming mode')
|
|
parser.add_argument('--modelscope', action="store_true", default=False,
|
|
help="Use models from modelscope")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.modelscope:
|
|
from modelscope import AutoTokenizer
|
|
model_hub = 'modelscope'
|
|
else:
|
|
from transformers import AutoTokenizer
|
|
model_hub = 'huggingface'
|
|
|
|
model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
|
|
("OpenBMB/MiniCPM-V-2_6" if args.modelscope else "openbmb/MiniCPM-V-2_6")
|
|
image_path = args.image_url_or_path
|
|
|
|
lowbit_path = args.lowbit_path
|
|
|
|
if not lowbit_path or not os.path.exists(lowbit_path):
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
|
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
|
model = AutoModel.from_pretrained(model_path,
|
|
load_in_low_bit="sym_int4",
|
|
optimize_model=True,
|
|
trust_remote_code=True,
|
|
use_cache=True,
|
|
modules_to_not_convert=["vpm", "resampler"],
|
|
model_hub=model_hub)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
|
trust_remote_code=True)
|
|
else:
|
|
model = AutoModel.load_low_bit(lowbit_path,
|
|
optimize_model=True,
|
|
trust_remote_code=True,
|
|
use_cache=True,
|
|
modules_to_not_convert=["vpm", "resampler"])
|
|
tokenizer = AutoTokenizer.from_pretrained(lowbit_path,
|
|
trust_remote_code=True)
|
|
|
|
model.eval()
|
|
|
|
if lowbit_path and not os.path.exists(lowbit_path):
|
|
processor = AutoProcessor.from_pretrained(model_path,
|
|
trust_remote_code=True)
|
|
model.save_low_bit(lowbit_path)
|
|
tokenizer.save_pretrained(lowbit_path)
|
|
processor.save_pretrained(lowbit_path)
|
|
|
|
model = model.half().to('xpu')
|
|
|
|
query = args.prompt
|
|
if os.path.exists(image_path):
|
|
image = Image.open(image_path).convert('RGB')
|
|
else:
|
|
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
|
|
|
# Generate predicted tokens
|
|
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
|
|
msgs = [{'role': 'user', 'content': [image, args.prompt]}]
|
|
|
|
# ipex_llm model needs a warmup, then inference time can be accurate
|
|
model.chat(
|
|
image=None,
|
|
msgs=msgs,
|
|
tokenizer=tokenizer,
|
|
)
|
|
|
|
if args.stream:
|
|
res = model.chat(
|
|
image=None,
|
|
msgs=msgs,
|
|
tokenizer=tokenizer,
|
|
stream=True
|
|
)
|
|
|
|
print('-'*20, 'Input Image', '-'*20)
|
|
print(image_path)
|
|
print('-'*20, 'Input Prompt', '-'*20)
|
|
print(args.prompt)
|
|
print('-'*20, 'Stream Chat Output', '-'*20)
|
|
for new_text in res:
|
|
print(new_text, flush=True, end='')
|
|
else:
|
|
st = time.time()
|
|
res = model.chat(
|
|
image=None,
|
|
msgs=msgs,
|
|
tokenizer=tokenizer,
|
|
)
|
|
torch.xpu.synchronize()
|
|
end = time.time()
|
|
|
|
print(f'Inference time: {end-st} s')
|
|
print('-'*20, 'Input Image', '-'*20)
|
|
print(image_path)
|
|
print('-'*20, 'Input Prompt', '-'*20)
|
|
print(args.prompt)
|
|
print('-'*20, 'Chat Output', '-'*20)
|
|
print(res)
|