192 lines
7.5 KiB
Python
192 lines
7.5 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/phi/modeling_phi.py
|
|
# which is licensed under Apache License 2.0:
|
|
#
|
|
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
import torch
|
|
|
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
|
|
from ipex_llm.transformers.kv import DynamicNormalCache
|
|
from ipex_llm.utils.common.log4Error import invalidInputError
|
|
|
|
from typing import Optional, Tuple, List
|
|
from transformers.cache_utils import Cache
|
|
from transformers.models.phi.modeling_phi import repeat_kv, apply_rotary_pos_emb
|
|
from transformers.models.phi.modeling_phi import PhiModel
|
|
|
|
|
|
def should_use_fuse_rope(self, hidden_states, position_ids):
|
|
use_fuse_rope = (
|
|
hidden_states.device.type == "xpu" and
|
|
hidden_states.numel() == hidden_states.size(-1) and
|
|
not (self.training and hidden_states.requires_grad) and
|
|
position_ids is not None
|
|
)
|
|
return use_fuse_rope
|
|
|
|
|
|
def merge_qkv(module: torch.nn.Module):
|
|
if module.__class__.__name__ == "PhiAttention":
|
|
new_weight = torch.cat([
|
|
module.q_proj.weight.data,
|
|
module.k_proj.weight.data,
|
|
module.v_proj.weight.data,
|
|
], dim=0)
|
|
new_bias = torch.cat([
|
|
module.q_proj.bias.data,
|
|
module.k_proj.bias.data,
|
|
module.v_proj.bias.data,
|
|
], dim=-1)
|
|
|
|
qkv_proj = torch.nn.Linear(0, 0, bias=True)
|
|
qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
|
|
qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
|
|
qkv_proj.in_features = new_weight.size(1)
|
|
qkv_proj.out_features = new_weight.size(0)
|
|
module.qkv_proj = qkv_proj
|
|
|
|
del module.q_proj, module.k_proj, module.v_proj
|
|
|
|
|
|
def attention_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
invalidInputError(not self.qk_layernorm, "`qk_layernorm` must be false")
|
|
|
|
qkv = self.qkv_proj(hidden_states)
|
|
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
|
qkv = qkv.transpose(1, 2)
|
|
query_states, key_states, value_states = qkv.split([self.num_heads,
|
|
self.num_key_value_heads,
|
|
self.num_key_value_heads], dim=1)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
|
# Partial rotary embedding
|
|
query_rot, query_pass = (
|
|
query_states[..., : self.rotary_emb.dim],
|
|
query_states[..., self.rotary_emb.dim:],
|
|
)
|
|
key_rot, key_pass = (
|
|
key_states[..., : self.rotary_emb.dim],
|
|
key_states[..., self.rotary_emb.dim:],
|
|
)
|
|
|
|
# IPEX-LLM OPT: fuse rope
|
|
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
|
|
|
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
|
if use_fuse_rope:
|
|
query_rot, key_rot = apply_rotary_pos_emb_cache_freq_xpu(query_rot, key_rot, sin,
|
|
cos, "stablelm", position_ids)
|
|
else:
|
|
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
|
|
|
# [batch_size, seq_length, num_heads, head_dim]
|
|
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
|
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
|
|
|
invalidInputError(past_key_value is not None,
|
|
"`past_key_value` cannot be None")
|
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
|
self.layer_idx, None)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
|
|
attn_weights = torch.matmul(
|
|
query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
|
|
) / math.sqrt(self.head_dim)
|
|
|
|
if attention_mask is not None:
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
# upcast attention to fp32
|
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
|
dtype=torch.float32).to(value_states.dtype)
|
|
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
|
training=self.training)
|
|
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.dense(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
def model_forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
):
|
|
# IPEX-LLM OPT: kv cache but no sdp (its head_dim 80, cannot use sdp)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
if use_cache:
|
|
if not isinstance(past_key_values, DynamicNormalCache):
|
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
|
return PhiModel.forward(
|
|
self=self,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|