ipex-llm/python/llm/example/CPU/PyTorch-Models/Model/ziya/generate.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

78 lines
No EOL
3.1 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import numpy as np
from transformers import AutoTokenizer
ZIYA_PROMPT_FORMAT = "<human>: \n{prompt}\n<bot>: \n"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Ziya model')
parser.add_argument('--repo-id-or-model-path', type=str, default="IDEA-CCNL/Ziya-Coding-34B-v1.0",
help='The huggingface repo id for the Ziya model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="def quick_sort(arr):\n",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=128,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
from transformers import AutoModelForCausalLM
from ipex_llm import optimize_model
# enabling `use_cache=True` allows the model to utilize the previous
# key/values attentions to speed up decoding;
# to obtain optimal performance with BigDL-LLM `optimization_model` API optimizations,
# it is important to set use_cache=True for Ziya models
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
use_cache=True)
model = optimize_model(model)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = ZIYA_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
do_sample = True,
top_p = 0.85,
temperature = 0.8,
repetition_penalty = 0.95,
eos_token_id = tokenizer.eos_token_id,
pad_token_id = tokenizer.pad_token_id,
)
end = time.time()
output_str = tokenizer.batch_decode(output)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)