ipex-llm/python/llm/test/benchmark/ceval/ceval_csv_to_html.py
Yuxuan Xia 0c8d3c9830 Add C-Eval HTML report (#10294)
* Add C-Eval HTML report

* Fix C-Eval workflow pr trigger path

* Fix C-Eval workflow typos

* Add permissions to C-Eval workflow

* Fix C-Eval workflow typo

* Add pandas dependency

* Fix C-Eval workflow typo
2024-03-07 16:44:49 +08:00

138 lines
5.1 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Python program to convert CSV to HTML Table
import os
import sys
import argparse
import numpy as np
import pandas as pd
def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow', is_last=False):
if isinstance(val, float):
if val > max:
return 'background-color: %s' % color2
elif val <= -max:
return 'background-color: %s' % color1
elif val != 0.0 and is_last:
return 'background-color: %s' % color3
else:
return ''
def calculate_percentage_difference(cur_array, previous_array):
new_array = []
for i in range(len(cur_array)):
if type(cur_array[i]) == type(pd.NA) or type(previous_array[i]) == type(pd.NA):
new_array.append(pd.NA)
else:
new_array.append(round((cur_array[i]-previous_array[i])*100/previous_array[i], 2))
return np.array(new_array)
def check_diffs_within_normal_range(latest_csv, highlight_set, threshold):
within = True
for column in highlight_set:
for value in latest_csv[column]:
if type(value) != type(pd.NA):
within = within and abs(value) <= threshold
return within
def main():
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
help="The directory which stores the .csv file", default="/home/arda/BigDL/python/llm/dev/benchmark/ceval")
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
help="the threshold of highlight values", default=3.0)
parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
help="the baseline path which stores the baseline.csv file")
args = parser.parse_args()
csv_files = []
for file_name in os.listdir(args.folder_path):
file_path = os.path.join(args.folder_path, file_name)
if os.path.isfile(file_path) and file_name.endswith(".csv"):
csv_files.append(file_path)
csv_files.sort(reverse=True)
highlight_threshold=args.threshold
# get the newest csv file
latest_csv = pd.read_csv(csv_files[0], index_col=0)
# create daily html file
daily_html=csv_files[0].split(".")[0]+".html"
# add index column
latest_csv.reset_index(inplace=True)
# if found more than 1 csv file
if len(csv_files)>1:
if args.baseline_path:
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
else:
previous_csv = pd.read_csv(csv_files[1], index_col=0)
subjects = ['STEM', 'Social Science', 'Humanities', 'Other', 'Hard', 'Average']
precisions = ['sym_int4', 'fp8_e5m2']
highlight_set = []
insert_column = latest_csv.shape[-1]-1
# in the make_csv step we will handle the missing values and make it pd.NA
for subject in subjects:
# insert last accuracy task
latest_csv.insert(loc=insert_column, column=f'last_{subject}',
value=previous_csv[subject])
# insert precentage difference between previous and current value
latest_csv.insert(
loc=insert_column+1,
column=f'diff_{subject}(%)',
value=calculate_percentage_difference(latest_csv[subject], previous_csv[subject]))
# append in the highlight set
highlight_set.append(f'diff_{subject}(%)')
# update insert column
insert_column += 2
columns = {}
for column in latest_csv.columns.values.tolist():
columns[column] = '{:.2f}'
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=highlight_set)
# add css style to restrict width and wrap text
styled_df.set_table_styles([{
'selector': 'th, td',
'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
}], overwrite=False)
html_output = styled_df.set_table_attributes("border=1").to_html()
with open(daily_html, 'w') as f:
f.write(html_output)
else:
latest_csv.to_html(daily_html)
if args.baseline_path and not check_diffs_within_normal_range(latest_csv, highlight_set, highlight_threshold):
print("The diffs are outside the normal range: %" + str(highlight_threshold))
return 1
return 0
if __name__ == "__main__":
sys.exit(main())