441 lines
18 KiB
Python
441 lines
18 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# This file is adapted from
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gptj/modeling_gptj.py
|
|
#
|
|
|
|
import torch
|
|
from typing import Optional, Tuple, Union
|
|
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
|
apply_rotary_pos_emb, append_kv_cache, apply_ipex_rotate_every_two
|
|
from transformers.utils.import_utils import is_torch_fx_proxy
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
from transformers.models.gptj.modeling_gptj import GPTJModel
|
|
from ipex_llm.utils.common import invalidInputError
|
|
|
|
import os
|
|
|
|
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
|
|
|
|
|
def _get_embed_positions(self, position_ids):
|
|
embed_positions = self.embed_positions
|
|
if embed_positions.device != position_ids.device:
|
|
embed_positions = embed_positions.to(position_ids.device)
|
|
self.embed_positions = embed_positions
|
|
return embed_positions.repeat(position_ids.shape[0], 1, 1)
|
|
|
|
|
|
def _attn(
|
|
self,
|
|
query,
|
|
key,
|
|
value,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
):
|
|
# compute causal mask from causal mask buffer
|
|
query_length, key_length = query.size(-2), key.size(-2)
|
|
causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length]
|
|
|
|
# Keep the attention weights computation in fp32 to avoid overflow issues
|
|
query = query.to(torch.float32)
|
|
key = key.to(torch.float32)
|
|
|
|
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
|
|
|
mask_value = torch.finfo(attn_weights.dtype).min
|
|
# Need to be a tensor, otherwise we get error:
|
|
# `RuntimeError: expected scalar type float but found double`.
|
|
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
|
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
|
|
|
attn_weights = attn_weights / self.scale_attn
|
|
|
|
if attention_mask is not None:
|
|
# Apply the attention mask
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
attn_weights = attn_weights.to(value.dtype)
|
|
attn_weights = self.attn_dropout(attn_weights)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
attn_weights = attn_weights * head_mask
|
|
|
|
attn_output = torch.matmul(attn_weights, value)
|
|
|
|
return attn_output, attn_weights
|
|
|
|
|
|
def gptj_attention_forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = False,
|
|
rotary_emb: Optional[Tuple]=None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Union[
|
|
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
|
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
|
]:
|
|
query = self.q_proj(hidden_states)
|
|
key = self.k_proj(hidden_states)
|
|
value = self.v_proj(hidden_states)
|
|
|
|
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
|
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
|
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
|
|
|
sin, cos = rotary_emb
|
|
use_fuse_rope = hidden_states.device.type == "xpu" and not self.training
|
|
|
|
if self.rotary_dim is not None:
|
|
k_rot = key[:, :, :, : self.rotary_dim]
|
|
q_rot = query[:, :, :, : self.rotary_dim]
|
|
|
|
if use_fuse_rope:
|
|
apply_ipex_rotate_every_two(q_rot, k_rot, cos, sin)
|
|
else:
|
|
k_pass = key[:, :, :, self.rotary_dim:]
|
|
q_pass = query[:, :, :, self.rotary_dim:]
|
|
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, position_ids, "gptj")
|
|
key = torch.cat([k_rot, k_pass], dim=-1)
|
|
query = torch.cat([q_rot, q_pass], dim=-1)
|
|
else:
|
|
if use_fuse_rope:
|
|
apply_ipex_rotate_every_two(query, key, cos, sin)
|
|
else:
|
|
query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids, "gptj")
|
|
|
|
batch_size, q_len, _ = hidden_states.size()
|
|
|
|
key = key.permute(0, 2, 1, 3).contiguous()
|
|
query = query.permute(0, 2, 1, 3).contiguous()
|
|
|
|
kv_seq_len = key.size(-2)
|
|
device = hidden_states.device
|
|
|
|
if layer_past is not None:
|
|
kv_seq_len += layer_past[0].size(2)
|
|
|
|
if layer_past is not None:
|
|
cache_k = layer_past[0]
|
|
cache_v = layer_past[1]
|
|
past_length = cache_k.size(2)
|
|
if cache_k.stride()[1] < kv_seq_len * cache_k.size(3):
|
|
new_cache_k, new_cache_v = extend_kv_cache(batch_size,
|
|
self.num_attention_heads,
|
|
self.head_dim,
|
|
past_length,
|
|
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
|
dtype=cache_v.dtype,
|
|
device=device)
|
|
new_cache_k[:] = cache_k
|
|
new_cache_v[:] = cache_v
|
|
cache_k = new_cache_k
|
|
cache_v = new_cache_v
|
|
key, value = append_kv_cache(cache_k, cache_v, key, value)
|
|
|
|
elif use_cache:
|
|
key_cache, value_cache = init_kv_cache(batch_size,
|
|
self.num_attention_heads,
|
|
self.head_dim,
|
|
kv_seq_len,
|
|
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
|
dtype=value.dtype,
|
|
device=device)
|
|
key_cache[:] = key
|
|
value_cache[:] = value
|
|
key = key_cache
|
|
value = value_cache
|
|
|
|
if use_cache is True:
|
|
present = (key, value)
|
|
else:
|
|
present = None
|
|
|
|
# compute self-attention: V x Softmax(QK^T)
|
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
|
|
|
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
|
attn_output = self.out_proj(attn_output)
|
|
attn_output = self.resid_dropout(attn_output)
|
|
|
|
outputs = (attn_output, present)
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
return outputs # a, present, (attentions)
|
|
|
|
|
|
def gptj_block_forward(
|
|
self,
|
|
hidden_states: Optional[torch.FloatTensor],
|
|
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = False,
|
|
rotary_emb: Optional[Tuple]=None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
attn_outputs = self.attn(
|
|
hidden_states=hidden_states,
|
|
layer_past=layer_past,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
use_cache=use_cache,
|
|
rotary_emb=rotary_emb,
|
|
output_attentions=output_attentions,
|
|
)
|
|
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
|
outputs = attn_outputs[1:]
|
|
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
hidden_states = attn_output + feed_forward_hidden_states + residual
|
|
|
|
if use_cache:
|
|
outputs = (hidden_states,) + outputs
|
|
else:
|
|
outputs = (hidden_states,) + outputs[1:]
|
|
|
|
return outputs # hidden_states, present, (attentions)
|
|
|
|
|
|
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
|
sinusoid_inp = torch.einsum("i , j -> i j",
|
|
torch.arange(num_pos, dtype=torch.float), inv_freq).float()
|
|
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
|
|
|
|
|
old_init = GPTJModel.__init__
|
|
|
|
|
|
def gptj_model_new_init(self, config):
|
|
old_init(self, config)
|
|
embed_dim = config.hidden_size
|
|
rotary_dim = config.rotary_dim
|
|
pos_embd_dim = rotary_dim or embed_dim
|
|
max_positions = config.max_position_embeddings
|
|
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
|
|
|
|
|
def get_new_embed_positions(position_ids, prev_embed_positions):
|
|
embed_positions = prev_embed_positions
|
|
if embed_positions.device != position_ids.device:
|
|
embed_positions = embed_positions.to(position_ids.device)
|
|
prev_embed_positions = embed_positions
|
|
return embed_positions.repeat(position_ids.shape[0], 1, 1), prev_embed_positions
|
|
|
|
|
|
def gptj_model_forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None \
|
|
else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
invalidInputError(False,
|
|
"You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
batch_size = input_ids.shape[0]
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
batch_size = inputs_embeds.shape[0]
|
|
else:
|
|
invalidInputError(False, "You have to specify either input_ids or inputs_embeds")
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if token_type_ids is not None:
|
|
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
|
|
|
if past_key_values is None:
|
|
past_length = 0
|
|
past_key_values = tuple([None] * len(self.h))
|
|
else:
|
|
past_length = past_key_values[0][0].size(-2)
|
|
|
|
if position_ids is None:
|
|
position_ids = torch.arange(past_length, input_shape[-1] + past_length,
|
|
dtype=torch.long, device=device)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
# Attention mask.
|
|
if attention_mask is not None:
|
|
if batch_size <= 0:
|
|
invalidInputError(False, "batch_size has to be defined and > 0")
|
|
attention_mask = attention_mask.view(batch_size, -1)
|
|
# We create a 3D attention mask from a 2D tensor mask.
|
|
# Sizes are [batch_size, 1, 1, to_seq_length]
|
|
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
|
# this attention mask is more simple than the triangular masking of causal attention
|
|
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
|
attention_mask = attention_mask[:, None, None, :]
|
|
|
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
|
# masked positions, this operation will create a tensor which is 0.0 for
|
|
# positions we want to attend and the dtype's smallest value for masked positions.
|
|
# Since we are adding it to the raw scores before the softmax, this is
|
|
# effectively the same as removing these entirely.
|
|
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x num_attention_heads x N x N
|
|
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.wte(input_ids)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
if token_type_ids is not None:
|
|
token_type_embeds = self.wte(token_type_ids)
|
|
hidden_states = hidden_states + token_type_embeds
|
|
|
|
hidden_states = self.drop(hidden_states)
|
|
|
|
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing."
|
|
"Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
presents = () if use_cache else None
|
|
all_self_attentions = () if output_attentions else None
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
# Repeat cos sin here, call only once for each token.
|
|
# If put this to attension forward, it will generate too many times.
|
|
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
|
# The logic to conditionally copy to GPU could not be traced, so we do this
|
|
# every time in the torch.fx case
|
|
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
|
else:
|
|
embed_positions, self.embed_positions = get_new_embed_positions(position_ids,
|
|
self.embed_positions)
|
|
|
|
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
|
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
|
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
|
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
|
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
# Model parallel
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(hidden_states.device)
|
|
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
|
if layer_past is not None:
|
|
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
|
# Ensure that attention_mask is always on the same device as hidden_states
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
if isinstance(head_mask, torch.Tensor):
|
|
head_mask = head_mask.to(hidden_states.device)
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
outputs = self._gradient_checkpointing_func(
|
|
block.__call__,
|
|
hidden_states,
|
|
None,
|
|
attention_mask,
|
|
position_ids,
|
|
head_mask[i],
|
|
use_cache,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
outputs = block(
|
|
hidden_states=hidden_states,
|
|
layer_past=layer_past,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask[i],
|
|
use_cache=use_cache,
|
|
rotary_emb=(sin, cos),
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
if use_cache is True:
|
|
presents = presents + (outputs[1],)
|
|
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
|
|
# Model Parallel: If it's the last layer for that device, put things on the next device
|
|
if self.model_parallel:
|
|
for k, v in self.device_map.items():
|
|
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
|
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(output_shape)
|
|
# Add last hidden state
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
|
|
if v is not None)
|
|
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=presents,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|