* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			109 lines
		
	
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import pytest
 | 
						|
import tempfile
 | 
						|
 | 
						|
import torch
 | 
						|
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq
 | 
						|
from transformers import LlamaTokenizer, AutoTokenizer
 | 
						|
 | 
						|
device = os.environ['DEVICE']
 | 
						|
print(f'Running on {device}')
 | 
						|
 | 
						|
@pytest.mark.parametrize('prompt, answer', [
 | 
						|
    ('What is the capital of France?\n\n', 'Paris')
 | 
						|
    ])
 | 
						|
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
 | 
						|
    (AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
 | 
						|
    (AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
 | 
						|
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')),
 | 
						|
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
 | 
						|
    # (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH')),
 | 
						|
    # (AutoModelForCausalLM, AutoTokenizer, os.environ.get('BAICHUAN2_7B_ORIGIN_PATH')),
 | 
						|
    # (AutoModelForCausalLM, AutoTokenizer, os.environ.get('QWEN_7B_ORIGIN_PATH')),
 | 
						|
    ])
 | 
						|
def test_completion(Model, Tokenizer, model_path, prompt, answer):
 | 
						|
    with torch.inference_mode():
 | 
						|
        tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = Model.from_pretrained(model_path,
 | 
						|
                                    load_in_4bit=True,
 | 
						|
                                    optimize_model=True,
 | 
						|
                                    trust_remote_code=True)
 | 
						|
        model = model.to(device)
 | 
						|
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
						|
        output = model.generate(input_ids, max_new_tokens=32)
 | 
						|
        model.to('cpu')   # deallocate gpu memory
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
 | 
						|
        assert answer in output_str
 | 
						|
 | 
						|
@pytest.mark.parametrize('prompt, answer', [
 | 
						|
    ('What is the capital of France?\n\n', 'Paris')
 | 
						|
    ])
 | 
						|
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
 | 
						|
    (AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
 | 
						|
    (AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
 | 
						|
    ])
 | 
						|
def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
 | 
						|
    tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    model = Model.from_pretrained(model_path,
 | 
						|
                                  load_in_4bit=True,
 | 
						|
                                  optimize_model=True,
 | 
						|
                                  trust_remote_code=True)
 | 
						|
    
 | 
						|
    with tempfile.TemporaryDirectory() as tempdir:
 | 
						|
        model.save_low_bit(tempdir)
 | 
						|
        loaded_model = Model.load_low_bit(tempdir,
 | 
						|
                                          optimize_model=True,
 | 
						|
                                          trust_remote_code=True)
 | 
						|
 | 
						|
        with torch.inference_mode():
 | 
						|
            loaded_model = loaded_model.to(device)
 | 
						|
 | 
						|
            input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
						|
            output = loaded_model.generate(input_ids, max_new_tokens=32)
 | 
						|
            loaded_model.to('cpu')   # deallocate gpu memory
 | 
						|
            output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
						|
 | 
						|
            assert answer in output_str
 | 
						|
 | 
						|
def test_transformers_auto_model_for_speech_seq2seq_int4():
 | 
						|
    with torch.inference_mode():
 | 
						|
        from transformers import WhisperProcessor
 | 
						|
        from datasets import load_from_disk
 | 
						|
        model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH')
 | 
						|
        dataset_path = os.environ.get('SPEECH_DATASET_PATH')
 | 
						|
        processor = WhisperProcessor.from_pretrained(model_path)
 | 
						|
        ds = load_from_disk(dataset_path)
 | 
						|
        sample = ds[0]["audio"]
 | 
						|
        input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
 | 
						|
        input_features = input_features.to(device)
 | 
						|
        model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True)
 | 
						|
        model = model.to(device)
 | 
						|
        predicted_ids = model.generate(input_features)
 | 
						|
        # decode token ids to text
 | 
						|
        transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
 | 
						|
        model.to('cpu')
 | 
						|
        print('Output:', transcription)
 | 
						|
        assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    pytest.main([__file__])
 |